Advertisement

Sequences with Low Correlation

  • Daniel J. KatzEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11321)

Abstract

Pseudorandom sequences are used extensively in communications and remote sensing. Correlation provides one measure of pseudorandomness, and low correlation is an important factor determining the performance of digital sequences in applications. We consider the problem of constructing pairs (fg) of sequences such that both f and g have low mean square autocorrelation and f and g have low mean square mutual crosscorrelation. We focus on aperiodic correlation of binary sequences, and review recent contributions along with some historical context.

Keywords

Crosscorrelation Autocorrelation Aperiodic Merit factor Sequence 

Notes

Acknowledgement

The author thanks Yakov Sapozhnikov for his careful reading of this paper and his helpful suggestions.

References

  1. 1.
    Boehmer, A.M.: Binary pulse compression codes. IEEE Trans. Inform. Theory 13(2), 156–167 (1967)CrossRefGoogle Scholar
  2. 2.
    Boothby, K.T.R., Katz, D.J.: Low correlation sequences from linear combinations of characters. IEEE Trans. Inform. Theory 63(10), 6158–6178 (2017)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Borwein, P., Mossinghoff, M.: Rudin-Shapiro-like polynomials in \(L_4\). Math. Comput. 69(231), 1157–1166 (2000)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Brillhart, J., Carlitz, L.: Note on the Shapiro polynomials. Proc. Amer. Math. Soc. 25, 114–118 (1970)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Ding, C., Helleseth, T., Lam, K.Y.: Several classes of binary sequences with three-level autocorrelation. IEEE Trans. Inform. Theory 45(7), 2606–2612 (1999)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Ding, C., Helleseth, T., Lam, K.Y.: Duadic sequences of prime lengths. Discrete Math. 218(1–3), 33–49 (2000)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Golay, M.J.E.: Static multislit spectrometry and its application to the panoramic display of infrared spectra. J. Opt. Soc. Am. 41(7), 468–472 (1951)CrossRefGoogle Scholar
  8. 8.
    Golay, M.J.E.: A class of finite binary sequences with alternate autocorrelation values equal to zero. IEEE Trans. Inform. Theory 18, 449–450 (1972)CrossRefGoogle Scholar
  9. 9.
    Golay, M.J.E.: Hybrid low autocorrelation sequences. IEEE Trans. Inform. Theory 21, 460–462 (1975)CrossRefGoogle Scholar
  10. 10.
    Golay, M.J.E.: Sieves for low autocorrelation binary sequences. IEEE Trans. Inform. Theory 23, 43–51 (1977)CrossRefGoogle Scholar
  11. 11.
    Golay, M.J.E.: The merit factor of long low autocorrelation binary sequences. IEEE Trans. Inform. Theory 28(3), 543–549 (1982)CrossRefGoogle Scholar
  12. 12.
    Golay, M.J.E.: The merit factor of Legendre sequences. IEEE Trans. Inform. Theory 29, 934–936 (1983)CrossRefGoogle Scholar
  13. 13.
    Gold, R.: Optimal binary sequences for spread spectrum multiplexing. IEEE Trans. Inform. Theory 13(4), 619–621 (1967)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Golomb, S.W.: Shift register sequences. With portions co-authored by Lloyd R. Welch, Richard M. Goldstein, and Alfred W. Hales, Holden-Day Inc., San Francisco, California-Cambridge-Amsterdam (1967)Google Scholar
  15. 15.
    Golomb, S.W., Gong, G.: Signal Design for Good Correlation. Cambridge University Press, Cambridge (2005)CrossRefGoogle Scholar
  16. 16.
    Günther, C., Schmidt, K.U.: Merit factors of polynomials derived from difference sets. J. Combin. Theory Ser. A 145, 340–363 (2017)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Høholdt, T., Jensen, H.E.: Determination of the merit factor of Legendre sequences. IEEE Trans. Inform. Theory 34(1), 161–164 (1988)CrossRefGoogle Scholar
  18. 18.
    Høholdt, T., Jensen, H.E., Justesen, J.: Aperiodic correlations and the merit factor of a class of binary sequences. IEEE Trans. Inform. Theory 31(4), 549–552 (1985)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Jedwab, J., Katz, D.J., Schmidt, K.U.: Advances in the merit factor problem for binary sequences. J. Combin. Theory Ser. A 120(4), 882–906 (2013)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Jedwab, J., Katz, D.J., Schmidt, K.U.: Littlewood polynomials with small \(L^4\) norm. Adv. Math. 241, 127–136 (2013)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Jedwab, J., Schmidt, K.U.: The merit factor of binary sequence families constructed from \(m\)-sequences. Finite fields: theory and applications. Contemp. Math. 518, 265–278 (2010)CrossRefGoogle Scholar
  22. 22.
    Jedwab, J., Schmidt, K.U.: The \(L_4\) norm of Littlewood polynomials derived from the Jacobi symbol. Pacific J. Math. 257(2), 395–418 (2012)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Jensen, H.E., Høholdt, T.: Binary sequences with good correlation properties. In: Huguet, L., Poli, A. (eds.) AAECC 1987. LNCS, vol. 356, pp. 306–320. Springer, Heidelberg (1989).  https://doi.org/10.1007/3-540-51082-6_87CrossRefGoogle Scholar
  24. 24.
    Jensen, J.M., Jensen, H.E., Høholdt, T.: The merit factor of binary sequences related to difference sets. IEEE Trans. Inform. Theory 37((3 part 1)), 617–626 (1991)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Kärkkäinen, K.H.A.: Mean-square cross-correlation as a performance measure for department of spreading code families. In: IEEE Second International Symposium on Spread Spectrum Techniques and Applications, pp. 147–150 (1992)Google Scholar
  26. 26.
    Katz, D.J.: Asymptotic \(L^4\) norm of polynomials derived from characters. Pacific J. Math. 263(2), 373–398 (2013)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Katz, D.J.: Aperiodic crosscorrelation of sequences derived from characters. IEEE Trans. Inform. Theory 62(9), 5237–5259 (2016)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Katz, D.J., Lee, S., Trunov, S.A.: Crosscorrelation of Rudin-Shapiro-like polynomials. Preprint, arXiv:1702.07697 (2017)
  29. 29.
    Katz, D.J., Moore, E.: Sequence pairs with lowest combined autocorrelation and crosscorrelation. Preprint, arXiv:1711.02229 (2017)
  30. 30.
    Katz, D.J., Lee, S., Trunov, S.A.: Rudin-Shapiro-like polynomials with maximum asymptotic merit factor. Preprint, arXiv:1711.02233 (2017)
  31. 31.
    Kirilusha, A., Narayanaswamy, G.: Construction of new asymptotic classes of binary sequences based on existing asymptotic classes. Summer Science Technical report, Department of Mathematics & Computer Science, University of Richmond, VA (1999)Google Scholar
  32. 32.
    Littlewood, J.E.: On polynomials \(\sum ^{n}\pm z^{m}\), \(\sum ^{n}e^{\alpha _{m}i}z^{m}\), \(z=e^{\theta _{i}}\). J. London Math. Soc. 41, 367–376 (1966)MathSciNetCrossRefGoogle Scholar
  33. 33.
    Littlewood, J.E.: Some Problems in Real and Complex Analysis. D. C. Heath and Co., Raytheon Education Co., Lexington, Massachusetts (1968)Google Scholar
  34. 34.
    Mauduit, C., Sárközy, A.: On finite pseudorandom binary sequences. I. Measure of pseudorandomness, the Legendre symbol. Acta Arith. 82(4), 365–377 (1997)MathSciNetCrossRefGoogle Scholar
  35. 35.
    Parker, M.G.: Even length binary sequence families with low negaperiodic autocorrelation. In: Boztaş, S., Shparlinski, I.E. (eds.) AAECC 2001. LNCS, vol. 2227, pp. 200–209. Springer, Heidelberg (2001).  https://doi.org/10.1007/3-540-45624-4_21CrossRefGoogle Scholar
  36. 36.
    Pursley, M.B., Sarwate, D.V.: Bounds on aperiodic cross-correlation for binary sequences. Electron. Lett. 12(12), 304–305 (1976)CrossRefGoogle Scholar
  37. 37.
    Rudin, W.: Some theorems on Fourier coefficients. Proc. Amer. Math. Soc. 10, 855–859 (1959)MathSciNetCrossRefGoogle Scholar
  38. 38.
    Sarwate, D.V.: Mean-square correlation of shift-register sequences. IEE Proc. F-Commun. Radar Signal Process. 131(2), 101–106 (1984)CrossRefGoogle Scholar
  39. 39.
    Schmidt, K.U., Jedwab, J., Parker, M.G.: Two binary sequence families with large merit factor. Adv. Math. Commun. 3(2), 135–156 (2009)MathSciNetCrossRefGoogle Scholar
  40. 40.
    Scholtz, R.A., Welch, L.R.: GMW sequences. IEEE Trans. Inform. Theory 30(3), 548–553 (1984)MathSciNetCrossRefGoogle Scholar
  41. 41.
    Schroeder, M.R.: Number Theory in Science and Communication. With Applications in Cryptography, Physics, Digital Information, Computing, and Self-similarity. Springer Series in Information Sciences, vol. 7, 4th edn. Springer, Heidelberg (2006).  https://doi.org/10.1007/b137861CrossRefzbMATHGoogle Scholar
  42. 42.
    Shapiro, H.S.: Extrenal problems for polynomials and power series. Master’s thesis. Institute of Technology, Cambridge, Massachusetts (1951)Google Scholar
  43. 43.
    Sidel’nikov, V.M.: Some \(k\)-valued pseudo-random sequences and nearly equidistant codes. Problemy Peredači Informacii 5(1), 16–22 (1969)MathSciNetzbMATHGoogle Scholar
  44. 44.
    Turyn, R.J.: Hadamard matrices, Baumert-Hall units, four-symbol sequences, pulse compression, and surface wave encodings. J. Combin. Theory Ser. A 16, 313–333 (1974)MathSciNetCrossRefGoogle Scholar
  45. 45.
    Xiong, T., Hall, J.I.: Construction of even length binary sequences with asymptotic merit factor 6. IEEE Trans. Inform. Theory 54(2), 931–935 (2008)MathSciNetCrossRefGoogle Scholar
  46. 46.
    Xiong, T., Hall, J.I.: Modifications of modified Jacobi sequences. IEEE Trans. Inform. Theory 57(1), 493–504 (2011)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Department of MathematicsCalifornia State UniversityNorthridgeUSA

Personalised recommendations