Advertisement

Construction of Some Codes Suitable for Both Side Channel and Fault Injection Attacks

  • Claude Carlet
  • Cem Güneri
  • Sihem Mesnager
  • Ferruh ÖzbudakEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11321)

Abstract

Using algebraic curves over finite fields, we construct some codes suitable for being used in the countermeasure called Direct Sum Masking which allows, when properly implemented, to protect the whole cryptographic block cipher algorithm against side channel attacks and fault injection attacks, simultaneously. These codes address a problem which has its own interest in coding theory.

Keywords

SCA FIA MDS code Algebraic geometry code 

Notes

Acknowledgement

Güneri and Özbudak are supported by the TÜBİTAK project 215E200, which is associated with the SECODE project in the scope of the CHIST-ERA Program. Carlet and Mesnager are also supported by the SECODE Project.

References

  1. 1.
    Bhasin, S., Danger, J.-L., Guilley, S., Najm, Z., Ngo, X.T.: Linear complementary dual code improvement to strengthen encoded circuit against hardware Trojan horses. In: IEEE International Symposium on Hardware Oriented Security and Trust (HOST), 5–7 May 2015Google Scholar
  2. 2.
    Bringer, J., Carlet, C., Chabanne, H., Guilley, S., Maghrebi, H.: Orthogonal direct sum masking. In: Naccache, D., Sauveron, D. (eds.) WISTP 2014. LNCS, vol. 8501, pp. 40–56. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-662-43826-8_4CrossRefGoogle Scholar
  3. 3.
    Carlet, C., Daif, A., Guilley, S., Tavernier, C.: Polynomial direct sum masking to protect against both SCA and FIA. J. Cryptogr. Eng. (2018).  https://doi.org/10.1007/s13389-018-0194-9
  4. 4.
    Carlet, C., Guilley, S.: Complementary dual codes for counter-measures to side-channel attacks. Adv. Math. Commun. 10(1), 131–150 (2016)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Carlet, C., Guilley, S.: Satatistical properties of side-channel and fault injection attacks using coding theory. Cryptogr. Commun. 10, 909–933 (2018)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Carlet, C., Güneri, C., Özbudak, F., Özkaya, B., Solé, P.: On linear complementary pairs of codes. IEEE Trans. Inf. Theory, to appearGoogle Scholar
  7. 7.
    Carlet, C., Güneri, C., Özbudak, F., Solé, P.: A new concatenated type construction for LCD codes and isometry codes. Discrete Math. 341, 830–835 (2018)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Carlet, C., Mesnager, S., Tang, C., Qi, Y.: Euclidean and Hermitian LCD MDS codes. Des. Codes Cryptogr. 86, 1–4 (2018).  https://doi.org/10.1007/s10623-018-0463-8MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Carlet, C., Mesnager, S., Tang, C., Qi, Y.: New characterization and parametrization of LCD codes. IEEE Trans. Inf. Theory, vol. To appear. https://arxiv.org/abs/1709.03217
  10. 10.
    Carlet, C., Mesnager, S., Tang, C., Qi, Y., Pellikaan, R.: Linear codes over \(\mathbb{F}_q\) are equivalent to LCD codes for \(q>3\). IEEE Trans. Inf. Theory 64(4), 3010–3017 (2018)CrossRefGoogle Scholar
  11. 11.
    Ding, C., Li, C., Li, S.: LCD Cyclic codes over finite fields. arXiv:1608. 0217v1 [cs.IT]
  12. 12.
    Güneri, C., Özkaya, B., Solé, P.: Quasi-cyclic complementary dual codes. Finite Fields Appl. 42, 67–80 (2016)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Güneri, C., Özbudak, F., Özkaya, B., Saçıikara, E., Sepasdar, Z., Solé, P.: Structure and performance of generalized quasi-cyclic codes. Finite Fields Appl. 47, 183–202 (2017)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Li, S., Ding, C., Liu, H.: A family of reversible BCH codes. arXiv:1608.02169v1 [cs.IT]
  15. 15.
    Li, S., Ding, C., Liu, H.: Parameters of two classes of LCD BCH codes. arXiv:1608.02670 [cs.IT]
  16. 16.
    Mesnager, S., Tang, C., Qi, Y.: Complementary dual algebraic geometry codes. IEEE Trans. Inf. Theory 64(4), 2390–2397 (2018)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Jin, L.: Construction of MDS codes with complementary duals. IEEE Trans. Inf. Theory 63(5), 2843–2847 (2016)MathSciNetzbMATHGoogle Scholar
  18. 18.
    SECODE Project Report: Preliminary assesment of the candidate codes with respect to fault injection attacks, December 2017Google Scholar
  19. 19.
    Stichtenoth, H.: Algebraic Function Fields and Codes. Springer, Heidelberg (1993)zbMATHGoogle Scholar
  20. 20.
    Yang, X., Massey, J.L.: The condition for a cyclic code to have a complementary dual. J. Discrete Math. 126, 391–393 (1994)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Claude Carlet
    • 1
    • 2
  • Cem Güneri
    • 3
  • Sihem Mesnager
    • 4
  • Ferruh Özbudak
    • 5
    Email author
  1. 1.LAGA and University of Paris VIIISaint-DenisFrance
  2. 2.University of BergenBergenNorway
  3. 3.Sabancı University, FENSIstanbulTurkey
  4. 4.Department of MathematicsUniversities of Paris VIII and XIII and Telecom ParisTechParisFrance
  5. 5.Middle East Technical UniversityAnkaraTurkey

Personalised recommendations