Advertisement

Normal Basis Exhaustive Search: 10 Years Later

  • L. Moura
  • D. Panario
  • D. ThomsonEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11321)

Abstract

This paper concerns an exhaustive search for normal bases with minimum complexity in finite fields \(\mathbb {F}_{2^n}\) over \(\mathbb {F}_2\) for \(n \le 46\). This is a followup paper to [11], which appeared one decade ago in 2008 and completed the cases \(n \le 39\). We extend the results in [11] by taking advantage of a combination of algorithmic improvements, more efficient implementations and massive parallelism.

Keywords

Finite fields Normal bases NTL Parallel computing 

Notes

Acknowledgement

We would like to thank the three reviewers for their helpful suggestions, which greatly improved the presentation of this paper.

References

  1. 1.
    Arnault, F., Pickett, E.J., Vinatier, S.: Construction of self-dual normal bases and their complexity. Finite Fields Appl. 18, 458–472 (2012)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Compute Canada: 2018 Final Allocations for Publication. https://www.computecanada.ca/research-portal/accessing-resources/resource-allocation-competitions/rac-2018-results/. Accessed 17 May 2018
  3. 3.
    Blake, I.F., Gao, S., Mullin, R.C.: Specific irreducible polynomials with linearly independent roots over finite fields. Linear Algebr. Appl. 253, 227–249 (1997)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Gao, S., Lenstra, H.W.: Optimal normal bases. Des. Codes Cryptogr. 2, 315–323 (1992)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Gao, S., Panario, D.: Density of normal elements. Finite Fields Appl. 3, 141–150 (1997)MathSciNetCrossRefGoogle Scholar
  6. 6.
    von zur Gathen, J., Gerhard, J.: Modern Computer Algebra. Cambridge University Press, Cambridge (2013)Google Scholar
  7. 7.
    gperftools: Authors unlisted \(\copyright \) Google Inc. (2005). www.github.io/gperftools. Accessed 27 Mar 2018
  8. 8.
    Jungnickel, D.: Finite Fields: Structure and Arithmetics, Bibliographisches Institut, Mannheim GE (1993)Google Scholar
  9. 9.
    Kreher, D.L., Stinson, D.R.: Combinatorial Algorithms: Generation Enumeration and Search. CRC Press, Boca Raton (1999)zbMATHGoogle Scholar
  10. 10.
    Lidl, R., Niederreiter, H.: Finite Fields. Cambridge University Press, Oxford (1997)zbMATHGoogle Scholar
  11. 11.
    Masuda, A., Moura, L., Panario, D., Thomson, D.: Low complexity normal elements over finite fields of characteristic two. IEEE Trans. Comput. 57, 990–1001 (2008)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Mullin, R.C., Onyszchuk, I.M., Vanstone, S.A., Wilson, R.M.: Optimal normal bases in \(GF(p^n)\), Discrete Appl. Math. 22, 149–161 (1988/1989)Google Scholar
  13. 13.
    Mullen, G.L., Panario, D.: Handbook of Finite Fields. CRC Press, Boca Raton (2013)CrossRefGoogle Scholar
  14. 14.
    National Institute for Standards in Technology: Digital Signature Standard FIPS PUB 186–4 (2013)Google Scholar
  15. 15.
    SageMath: the Sage Mathematics Software System (Version 7.1.0). The Sage Developers (2018). http://www.sagemath.org
  16. 16.
    Shoup, V.: NTL: number theory library. www.shoup.net/ntl. Accessed 3 Mar 2018
  17. 17.
    Silva, D., Kschischang, F.: Fast encoding and decoding of Gabidulin codes. IEEE Int. Symp. Inf. Theory 2009, 2858–2862 (2009)Google Scholar
  18. 18.
    Thomson, D.: Exhaustive search for normal basis, Version 1.0.0. www.github.com/dgthoms/exh_normal. Accessed 26 May 2018

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.University of OttawaOttawaCanada
  2. 2.Carleton UniversityOttawaCanada

Personalised recommendations