Zinc and Silver Nanoparticles: Properties, Applications and Impact to the Aquatic Environment

  • Paulo Ricardo Franco MarcelinoEmail author
  • Mariete Barbosa Moreira
  • Talita Martins Lacerda
  • Silvio Silvério da SilvaEmail author


Recent advances in the field of nanoscience and nanotechnology enabled the development of precise processes that are used across the most diverse science fields to control individual atoms and molecules. Inorganic nanomaterials, specially zinc and silver nanoparticles (Zn-NPs, Ag-NPs), have been attracting attention in the last decades due to their versatility, with applications as active componentes in eletronics, pharmaceuticals, cosmetic and agricultural products. However, safe nanotechnology unfortunatelly did not progress at the same speed, and hazardous nanomaterials are still disposed indiscriminately, crompromising the environment. Herein, the most recent and relevant contributions related to Zn-NPs and Ag-NPs, with regard to their chemical properties, utilization, disposal, interaction with biological systems and environmental impacts, are presented and discussed.



Silver Nanoparticles






Natural Organic Matter




Zinc Nanoparticles


  1. Adams LK, Lyon DY, Alvarez PJJ (2006) Comparative eco-toxicity of nanoscale TiO2, SiO2, and ZnO water suspensions. Water Res 40:3527–3532PubMedCrossRefPubMedCentralGoogle Scholar
  2. Ahmad N, Shree K, Srivastava M, Dutra R (2014) Novel rapid biological approach for synthesis of silver nanoparticles and it characterization. Int J Pharmacol 1:28–31Google Scholar
  3. Ale A, Barcchetta C, Rossi AS, Desimone MF, Torre FR, Gervasio S, Cazenave J (2018) Nanosilver toxicity in gills of a neotropical fish metal accumulation oxidative stress histopathology and other physiological effects. Ecotoxicol Environ Saf 148:976–984CrossRefGoogle Scholar
  4. Ali D, Alarifi S, Kumar S (2012) Oxidative stress and genotoxic effect of zinc oxide nanoparticles in freshwater snail Lymnaea luteola L. Aquat Toxicol 124–125:83–90PubMedCrossRefPubMedCentralGoogle Scholar
  5. Amde M, Liu JF, Tan ZQ, Bekana D (2017) Transformation and bioavailability of metal oxide nanoparticles in aquatic and terrestrial environments. A review. Environ Pollut 230:250–267PubMedCrossRefPubMedCentralGoogle Scholar
  6. Bagherzade G, Tavakolo MM, Namaei MH (2017) Green synthesis of silver nanoparticles using aqueous extrat of saffron (Crocus sativus L.) wastages and its antibacterial activity against six bacteria. Asian Pac J Trop Biomed 7:227–233CrossRefGoogle Scholar
  7. Basnet P, Chanu TI, Samanta D, Chatterjee S (2018) A review on bio-synthesized zinc oxide nanoparticles using plant extracts as reductants and stabilizing agentes. J Photochem Photobiol B 183:201–221PubMedCrossRefPubMedCentralGoogle Scholar
  8. Beckmann J, Johnston W (1814) A history of inventions and discoveries, vol 3, 2nd edn. WalkerGoogle Scholar
  9. Benn TM, Westerhoff P (2008) Nanoparticle silver released into water from commercially available sock fabrics. Environ Sci Technol 42:4133–4139PubMedCrossRefPubMedCentralGoogle Scholar
  10. Bessemer RA, Butler KMA, Tunnah L, Callaghan NI, Rundle A, Currie S, Dieni CA, MacCormack TJ (2014) Cardiorespiratory toxicity of environmentally relevant zinc oxide nanoparticles in the freshwater fish Catostomus commersonii. Nanotoxicology 9:861–870PubMedCrossRefPubMedCentralGoogle Scholar
  11. Bian SW, Mudunkotuwa IA, Rupasinghe T, Grassian VH (2011) Aggregation and dissolution of 4 nm ZnO nanoparticles in aqueous environments: influence of pH, ionic strength, size, and adsorption of humic acid. Langmuir 27:6059–6068PubMedCrossRefPubMedCentralGoogle Scholar
  12. Birla SS, Tiwari VV, Gade AK, Ingle AP, Yadav AP, Rai MK (2009) Fabrication of silver nanoparticle by Phoma glomerata and its combined effect against Escherichia coli Pseudomonas aeruginosa and Staphylococcus aureus. Lett Appl Microbiol 48:173–179PubMedCrossRefPubMedCentralGoogle Scholar
  13. Blaser SA, Scheringer M, MacLeod M, Hungerbuhler (2008) Estimation of cumulative aquatic exposure and risk due to silver: Contribution of nano-functionalized plastic and textiles. Sci Total Environ 390:396–409PubMedCrossRefPubMedCentralGoogle Scholar
  14. Bogle K, Dhole S, Bhoraskar V (2006) Silver nanoparticles: Synthesis and size control by electron irradiation. Nanotechnology 17:3204–3208CrossRefGoogle Scholar
  15. Borkert CM (1989) Micronutrientes na planta. In: Büll LT, Rosolem CA. Interpretação de análise química de solo e planta para fins de adubação, p 309–329. Fundação de Estudos e Pesquisas Agrícolas e FlorestaisGoogle Scholar
  16. Bruneau A, Turcotte P, Pilote M, Gagné F, Gagnon C (2016) Fate of silver nanoparticles in wastewater and immunotoxic effects on rainbow trout. Aquat Toxicol 174:70–81PubMedCrossRefPubMedCentralGoogle Scholar
  17. Brunetti G, Donner E, Laera G, Sekine R, Scheckel KG, Khaksar M, Vasilev K, De Mastro G, Lombi E (2015) Fate of zinc and silver engineered nanoparticles in sewerage networks. Water Res 77:72–84PubMedCrossRefPubMedCentralGoogle Scholar
  18. Burchardt AD, Carvalho RN, Valente A, Nativo P, Gilliland D, Garcia CP, Passarella R, Pedroni V, Rossi F, Litieri T (2012) Effects of silver nanoparticles in diatom Thalssiosira pseudonana and Cyanobacterium synechococcus sp. Environ Sci Technol 46:11336–11344PubMedCrossRefPubMedCentralGoogle Scholar
  19. Carlson C, Hussain SM, Schlager JJ (2008) Unique cellular interaction of silver nanoparticles: size dependent generation of reactive oxygen species. J Phys Chem B 112:13608–13619PubMedCrossRefPubMedCentralGoogle Scholar
  20. CETESB—Companhia de Tecnologia de Saneamento Ambiental. Divisão de Toxicologia, Genotoxicidade e Microbiologia Ambiental. Ficha de Informações Toxicológicas do zinco (2012). Accessed on 18 June 18)
  21. Chang Y, Zhang M, Xia L, Zhang J, Xing G (2012) The toxic effects and mechanisms of CuO and ZnO nanoparticles. Materials 5:2850–2871CrossRefGoogle Scholar
  22. Choi JS, Kim RO, Yoon S, Kim WK (2016) Developmental toxicity of zinc oxide nanoparticles to zebrafish (Danio rerio): a transcriptomic analysis. PLoS ONE 11:e0160763PubMedPubMedCentralCrossRefGoogle Scholar
  23. Chun HS, Park D, Eun Lim S, Jeong KH, Park JS, Park HJ, Kang S (2017) Two zinc-aminoclays’ In-vitro cytotoxicity assessment in hela cells and In-vivo embryotoxicity assay in zebrafish. Ecotoxicol Environ Saf 137:103–112PubMedCrossRefPubMedCentralGoogle Scholar
  24. Cushen M, Kerry J, Morris M, Cruz-Romero M, Cummins E (2012) Nanotechnologies in the food industry recent developments risks and regulation. Trends Food Sci Technol 24:30–46CrossRefGoogle Scholar
  25. Doak SH, Griffiths SM, Manshian B, Singh N, Williams PM, Brown AP, Jenkins GJS (2009) Review: confounding experimental considerations in nanogenotoxicology. Mutagenesis 24:285–293PubMedCrossRefPubMedCentralGoogle Scholar
  26. Du J, Wang S, You H, Liu Z (2016) Effects of ZnO nanoparticles on perfluorooctane sulfonate induced thyroid-disrupting on zebrafish larvae. J Environ Sci 47:153–164CrossRefGoogle Scholar
  27. Dwivedi AD, Dubey SP, Sillanpaa M, Kwon YN, Lee C, Varma RS (2015) Fate of engineered nanoparticles: implications in the environment. Coord Chem Rev 287:64–78CrossRefGoogle Scholar
  28. Enghag P (2004) Encyclopedia of the elements, 1rd, 2nd edn. Wiley-VCH, GothenburgGoogle Scholar
  29. Fabrega J, Luoma SN, Tyler CR, Galloway TS, Lead JR (2011) Silver nanoparticles: behaviour and effects in the aquatic environment. Environ Int 37:517–531PubMedPubMedCentralCrossRefGoogle Scholar
  30. Fahmy SR, Sayed DA (2017) Toxicological perturbations of zinc oxide nanoparticles in the Coelatura aegyptiaca mussel. Toxicol Ind Health 33:564–575PubMedCrossRefPubMedCentralGoogle Scholar
  31. Falfushynska H, Gnatyshyna L, Yurchak I, Sokolova I, Stoliar O (2015) The effects of zinc nanooxide on cellular stress responses of the freshwater mussels Unio tumidus are modulated by elevated temperature and organic pollutants. Aquat Toxicol 162:82–93PubMedCrossRefPubMedCentralGoogle Scholar
  32. Fernandes Cruz JB, Freire Soares H (2011) Uma revisão sobre o zinco. Ensaios e Ciência: Ciências Biológicas, Agrárias e da Saúde 15:207–222Google Scholar
  33. Franci G, Falanga A, Galdiero S, Palomba L, Rai M, Morelli G, Galdieiro M (2015) Silver nanoparticles as potential antibacterial agentes. Molecules 20:8856–8874CrossRefGoogle Scholar
  34. Furno F, Morley KS, Wong B, Sharp BL, Arnold PL, Howdle SM, Bayston R, Reid HJ (2004) Silver nanoparticles and polymeric medical devices: a new approach to prevention of infection? J Antimicrob Chemother 54:1019–1024PubMedCrossRefPubMedCentralGoogle Scholar
  35. Galrão EZ (1995) Níveis críticos de zinco para o milho cultivado em latossolo vermelho amarelo, fase cerrado. Revista Brasileira de Ciência do Solo 19:255–260Google Scholar
  36. Galrão EZ, Mesquita Filho MV (1981) Efeito de fontes de zinco na produção de matéria seca do milho em um solo sob cerrado. Revista Brasileira de Ciência do Solo 5:167–170Google Scholar
  37. Ge L, Li Q, Wang M, Ouyang J, Li X, Xing MMQ (2014) Nanosilver particles in medical applications: synthesis, performance and toxicity. Int J Nanomed 9:2399–2407Google Scholar
  38. Geranio L, Heuberger M, Nowack B (2009) The behavior of silver nanotextiles during washing. Environ Sci Technol 43:8113–8118PubMedCrossRefPubMedCentralGoogle Scholar
  39. Goswami P, Borah N, Das DK (2014) Size and shape controlled synthesis of aqueous silver nanoparticles and a comparative study of their fluorescence and eletrochemical responses toward cholesterol. J Chem Pharm Res 6:697–704Google Scholar
  40. Grosell M, Boeck G, Johannson O, Wood CM (1999) The effects of silver on intestinal ion and acid-base regulation in the marine teleost fish Papophrys vertulus. Comp Biochem Physiol C: Pharmacol Toxicol Endocrinol 124:259–270Google Scholar
  41. Guzmán KAD, Taylor MR, Banfield JF (2006) Environmental risks of nanotechnology: national nanotechnology initiative funding, 2000–2004. Environ Sci Technol 40:1401–1407PubMedCrossRefPubMedCentralGoogle Scholar
  42. Hanley HR (1933) The story of zinc. J Chem Educ Part I:600–604; Part II:682–688Google Scholar
  43. He D, Bligh MW, Waite TD (2013) Effects of aggregate structure on the dissolution kinetics of citrate stabilized silver nanoparticles. Environ Sci Technol 44:2169–2175Google Scholar
  44. Heinlaan M, Ivask A, Blinova I, Dubourguier HC, Kahru A (2008) Toxicity of nanosized and bulk ZnO, CuO and TiO2 to bacteria Vibrio fischeri and crustaceans Daphnia magna and Thamnocephalus platyurus. Chemosphere 71:1308–1316PubMedCrossRefPubMedCentralGoogle Scholar
  45. Henriques GS, Hirata MH, Cozzolino SMF (2003) Aspectos recentes da absorção e biodisponibilidade do zinco e suas correlações com a fisiologia da isoforma testicular da Enzima Conversora de Angiotensina. Revista de Nutrição 16:333–345CrossRefGoogle Scholar
  46. Hong R, Pan T, Qian J, Li H (2006) Synthesis and surface modification of ZnO nanoparticles. Chem Eng J 119:71–81CrossRefGoogle Scholar
  47. Hotze EM, Phenrat T, Lowry GV (2010) Nanoparticle aggregation: challenges to understanding transport and reactivity in the environment. J Environ Qual 39:1909–1924PubMedCrossRefPubMedCentralGoogle Scholar
  48. Hou H, Takamatsu T, Koshikawa MK, Hosomi M (2005) Migration of silver, incluim antimony and bismuth and variations in their chemical fractions on addition to uncontaminated soils. Soil Sci 170:624–639CrossRefGoogle Scholar
  49. Huang HH, Ni XP, Loy GL, Chew CH, Tan KL, Loh FC (1996) Photochemical formation of silver nanoparticles in poly (n-vinylpyrrolidone). Langmuir 12:909–912CrossRefGoogle Scholar
  50. Huang Z, Jiang X, Guo D, Gu D, Gu N (2011) Controllable synthesis and biomedical applications of silver nanomaterials. J Nanosci Nanotechnol 11:9395–9408PubMedCrossRefPubMedCentralGoogle Scholar
  51. Hvolbaek B, Janssens VTW, Clausen SB, Falsig H, Christensen HC, Norskov KJ (2007) Catalytic activity of Au nanoparticles. Nanotoday 2:14–18CrossRefGoogle Scholar
  52. Ingle A, Gade A, Pierrat S, Sonnichsen C, Rai M (2008) Mycosynthesis of silver nanoparticles using the fungus Fusarium acuminatum and its activity against some human pathogenic bateria. Curr Nanosci 4:141–144CrossRefGoogle Scholar
  53. Jiang C, Aiken GR, Hsu-Kim H (2015) Effects of natural organic matter properties on the dissolution kinetics of zinc oxide nanoparticles. Environ Sci Technol 49:11476–11484PubMedCrossRefPubMedCentralGoogle Scholar
  54. Kaegi R, Voegelin A, Ort C, Innet B, Thalmann B, Krimer J, Hagedorfer H, Elumelu M, Muller E (2013) Fate and transformation of silver nanoparticles in urban wastewater systems. Water Res 47:3866–3877PubMedCrossRefPubMedCentralGoogle Scholar
  55. Kappor S, Lawless D, Kennepohl P, Meisel D, Serperone N (1994) Reduction and aggregation of silver ions in aqueous gelatins solutions. Langmuir 10:3018–3022CrossRefGoogle Scholar
  56. Katz LM, Dewan K, Bronaugh RL (2015) Nanotechnology in cosmetic. Food Chem Toxicol 85:127–137PubMedCrossRefPubMedCentralGoogle Scholar
  57. Khodashenas B, Ghorbani HR (2015) Synthesis of silver nanoparticles with diferentes shapes. Arab J Chem 6:1–16Google Scholar
  58. Kholoud MM, Abou E, Eftaiha A, Al-warthan A, Ammar RAA (2010) Synthesis and applications of silver nanoparticles. Arab J Chem 3:135–140CrossRefGoogle Scholar
  59. Kim B, Park CS, Murayama M, Hochella MF (2010) Discovery and characterization of silver sulfide nanoparticles in final sewage sludge products. Environ Sci Technol 44:7509–7514PubMedCrossRefPubMedCentralGoogle Scholar
  60. King JC (2011) Zinc: an essential but elusive nutrient. Am J Clin Nutr 94:679–684CrossRefGoogle Scholar
  61. Kumar A, Vemula PK, Ajayan PM, John G (2008) Silver-nanoparticle-embedded antimicrobial paints based on vegetable oil. Nat Mater 7:236–241PubMedCrossRefPubMedCentralGoogle Scholar
  62. Kumar D, Kumar G, Das R, Agrawal V (2018) Strong larvicidal potential of silver nanoparticles (AgNPs) synthezed using Holarrhena antidysenterica (L) wall bark extrat against malarial vector Anopheles slephensi Liston. Process Saf Environ Prot 116:137–148CrossRefGoogle Scholar
  63. Kwok KWH, Auffan M, Badireddy AR, Nelson CM, Wiesner MR, Chilkoti A, Liu J, Marinakos SM, Hinton DE (2012) Uptake of silver nanoparticles and toxicity to early life stage of japanese medaka (Oryzias latipes) effects of coating materials. Aquat Toxicol 120–121:59–66PubMedCrossRefPubMedCentralGoogle Scholar
  64. Laboratório de Química do Estado Sólido (Universidade Estadual de Campinas). Riscos potenciais ligados às nanotecnologias: financiamentos para pesquisa, Europa está na frente dos Estados Unidos. 2008. Disponível em: Accessed on 7 June 18
  65. Laboratório Virtual de Química (Universidade Estadual Paulista—Campus Bauru). Tabela Periódica—Zinco (2018). Disponível em: Accessed on 7 June 18
  66. Lazareva A, Keller AA (2014) Estimating potential life cycle releases of emgineered nanomaterials from wastewater treatment plants. ACS Sustain Chem Eng 2:1656–1665CrossRefGoogle Scholar
  67. Lee JD (1991) Concise inorganic chemistry, 4th edn. Chapman & Hall, London, UKGoogle Scholar
  68. Lee S, Chung H, Kim S, Lee I (2013) The genotoxic effect of ZnO and CuO nanoparticles on early growth of buckwheat, Fagopyrum esculentum. Water Air Soil Pollut 224:1668–1678CrossRefGoogle Scholar
  69. Lenzi E, Almeida VC, Favero LOB, Becker JB (2011) Detalhes da utilização do íon Hidróxido, HO-, no tratamento de efluentes contaminados com metal pesado zinco. Acta Scientiarum. Biol Sci 33:313–322Google Scholar
  70. Li Y, Kim YN, Lee EJ, Cai WP, Cho SO (2006) Synthesis of silver nanoparticles by eléctron irradiation of silver acetate. Nucl Instrum Methods Phys Res, Sect B 251:425–428CrossRefGoogle Scholar
  71. Lin D, Xing B (2008) Root uptake and phytotoxicity of ZnO nanoparticles. Environ Sci Technol 42:5580–5585CrossRefGoogle Scholar
  72. Liu JY, Hurt RH (2010) Iron release kinetics and particle persistence in aqueous nano silver colloids. Environ Sci Technol 44:2169–2175PubMedCrossRefPubMedCentralGoogle Scholar
  73. Lombi E, Donner E, Tavakkoli E, Turney TW, Naidu R, Miller BW, Scheckel KG (2012) Fate of zinc oxide nanoparticles during anaerobic digestion of wastewater and post-treatment processing of sewage sludge. Environ Sci Technol 46:9089–9096PubMedCrossRefPubMedCentralGoogle Scholar
  74. Lowry GV, Gregory KB, Apte SC, Lead JR (2012) Transformations of nanomaterials in the environment. Environ Sci Technol 46:6893–6899PubMedCrossRefPubMedCentralGoogle Scholar
  75. Lv J, Zhang S, Luo L, Han W, Zhang J, Yang K, Christie P (2012) Dissolution and microstructural transformation of ZnO nanoparticles under the influence of phosphate. Environ Sci Technol 46:7215–7221PubMedCrossRefPubMedCentralGoogle Scholar
  76. Ma H, Wallis LK, Diamond S, Li S, Canas-Carrell J, Parra A (2014) Impact of solar UV radiation on toxicity of ZnO nanoparticles through photocatalytic reactive oxygen species (ROS) generation and photo-induced dissolution. Environ Pollut 193:165–172PubMedCrossRefPubMedCentralGoogle Scholar
  77. Ma R, Levard C, Michel FM, Brown GE Jr, Lowry GV (2013) Sulfidation mechanism for zinc oxide nanoparticles and the effect of sulfidation on their solubility. Environ Sci Technol 47:2527–2534PubMedCrossRefPubMedCentralGoogle Scholar
  78. Majedi SM, Lee HK, Kelly BC (2013) Role of water temperature in the fate and transport of zinc oxide nanoparticles in aquatic environment. J Phys: Conf Ser 429:012039Google Scholar
  79. Malavolta E, Boaretto AE, Paulino VT (1991) Micronutrientes: uma visão geral. In: Ferreira ME, Cruz MCP. Micronutrientes na agricultura, p 1–34. POTAFOSGoogle Scholar
  80. Marassi V, Di Cristo L, Smith S, Ortelli S, Blosi M, Costa AL, Reschiglian P, Volkov Y, Prina-Mello A (2018) Silver nanoparticles as a medical device in healthcare settings: a five-step approach for candidate screening of coating agents. Roy Soc Open Sci 5(1):171113PubMedPubMedCentralCrossRefGoogle Scholar
  81. Marcantonio AS (2005) Toxicidade do sulfato de cobre e do sulfato de zinco para rã touro, rana catesbeiana shaw, 1802: Toxicidade aguda e crônica e parâmetros Hematológicos. 107 f. Tese (Doutorado em Aquicultura de Águas Continentais)—Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista, Jaboticabal (2005)Google Scholar
  82. Martens DC, Wastermann DT (1991) Fertilizer applications for correcting micronutrient deficiencies. In: Mortvedt JJ, Cox FR, Shuman LM, Welch RM eds. Micronutrients in agriculture. 2nd edn. Madison, Soil Science Society of AmericaGoogle Scholar
  83. Matsui I (2005) Nanoparticles for eletronic devices applications: a brief review. J Chem Eng Jpn 38:535–546CrossRefGoogle Scholar
  84. Mayrinck C, Raphael E, Ferrari JL, Schiavon MA (2014) Síntese, propriedades e aplicações de óxido de zinco nanoestruturado. Revista Virtual de Química 6:1185–1204CrossRefGoogle Scholar
  85. McGillicuddy P, Borah N, Das DK (2014) Size and shape controlled synthesis of aqueous silver nanoparticles and a comparative study of their fluorescence and eletrochemical responses toward cholesterol. J Chem Pharm Res 6:697–704Google Scholar
  86. Medeiros MA (2012) Elemento Químico: Zinco. Química Nova na Escola. 34:159–160Google Scholar
  87. Miao A, Schwehr KA, Xu C, Zhang S, Luo Z, Quigg A, Santschi PH (2009) The algal toxicity of silver engeneered nanoparticles and detoxification by exopolymeric substances. Environ Pollut 157:3034–3041PubMedCrossRefPubMedCentralGoogle Scholar
  88. Millstone EJ, KAvulak FJD, Wo HC, Holcombe WT, Westling JE, Briseno AL, Toney MF, Frechet JMJ (2010) Synthesis, proprieties and eletronic applications of size-controlled poly(3-hexylthiophene) nanoparticles. Langmuir 16:13056–13061PubMedCrossRefPubMedCentralGoogle Scholar
  89. Moore MN (2006) Do nanoparticles presente ecotoxicological risks for the heath of the aquatic environment? Environ Int 32:967–976PubMedCrossRefPubMedCentralGoogle Scholar
  90. Mudasir A, Ingle A, Rai M (2013) Enhanced antimicrobial activity of silver nanoparticles synthesized by Cryphonectria sp evaluated singly and in combination with antibiotics. Nanomed Nanotechnol Biol Med 9:105–110CrossRefGoogle Scholar
  91. Mude N, Ingle A, Gade A, Rai M (2009) Synthesis of silver nanoparticles using callus extract of Carica papaya—a first report. J Plant Biochem Biotechnol 18:83–86CrossRefGoogle Scholar
  92. Mudunkotuwa IA, Rupasinghe T, Wu CM, Grassian VH (2012) Dissolution of ZnO nanoparticles at circumneutral pH: a study of size effects in the presence and absence of citric acid. Langmuir 28:396–403PubMedCrossRefPubMedCentralGoogle Scholar
  93. Nel A, Xia T, Madler L, Li N (2006) Toxic potential of materials at the nanolevel. Science 311:622–627CrossRefGoogle Scholar
  94. Niemirowicz K, Durmas B, Tokajuk G, Piktel E, Michalak G, Gu X, Kulakowska A, Savage BP, Burcki R (2007) Sporicidal activity of ceragenin CSA-13 against Bacillus subtilis. Sci Rep 7:1–12Google Scholar
  95. Noguez C, Garzon L (2009) Optically active metal nanoparticles. Nanotoday 2:14–18Google Scholar
  96. Oberdorster G, Oberdorster E, Oberdorster J (2005) Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect 113:823–839PubMedPubMedCentralCrossRefGoogle Scholar
  97. Odzak N, Kistler D, Sigg L (2017) Influence of daylight on the fate of silver and zinc oxide nanoparticles in natural aquatic environments. Environ Pollut 226:1–11PubMedCrossRefPubMedCentralGoogle Scholar
  98. Omar FM, Abdul Aziz H, Stoll S (2014) Aggregation and disaggregation of ZnO nanoparticles: influence of pH and adsorption of Suwannee River humic acid. Sci Total Environ 468–469:195–201CrossRefGoogle Scholar
  99. Park K, Tutle G, Sinche F, Harper SL (2013) Stability of citrate-capped silver nanoparticle in exposure media na their affects on the development of embryonic zebrafish (Dario rerio). Arch Pharmacal Res 36:125–133CrossRefGoogle Scholar
  100. Parks GB (1927) The book of Ser Marco Polo, the Venetian, concerning the Kingdoms and Marvels of the East, Book 1, p 48, Macmillan CompanyGoogle Scholar
  101. Paschoalino MP, Marcone GPS, Jardim WF (2010) Os nanomateriais e a questão ambiental. Quim Nova 33:421–430CrossRefGoogle Scholar
  102. Peng YH, Tsai YC, Hsiung CE, Lin YH, Shih YH (2017) Influence of water chemistry on the environmental behaviors of commercial ZnO nanoparticles in various water and wastewater samples. J Hazard Mater 322:348–356PubMedCrossRefPubMedCentralGoogle Scholar
  103. Philippe A, Schaumann GE (2014) Interactions of dissolved organic matter with natural and engineered inorganic colloids: a review. Environ Sci Technol 48:8946–8962PubMedCrossRefPubMedCentralGoogle Scholar
  104. Polesel F, Farkas J, Kjos M, Almeida CP, Flores-Alsina X, Gernaey KV, Hansen SF, Plósz BG, Booth AM (2018) Occurrence, characterization and fate of (nano) particulate Ti and Ag in two norwegian wastewater treatment plants. Water Res 141:19–31PubMedCrossRefPubMedCentralGoogle Scholar
  105. Pollard AM, Heron C, Armitage RA (2016) Archaeological chemistry, 3rd edn. Royal Society of Chemistry (RSC)Google Scholar
  106. Preedy VR, Watson RR, Martin CR (2011) Handbook of behavior, food and nutrition, 1st edn. SpringerGoogle Scholar
  107. Purcell TW, Peters JJ (1998) Sources of silver in environment. Environ Toxicol Chem 17:539–546CrossRefGoogle Scholar
  108. Quik JT, Velzeboer I, Wouterse M, Koelmans AA, van de Meent D (2014) Heteroaggregation and sedimentation rates for nanomaterials in natural waters. Water Res 48:269–279PubMedCrossRefPubMedCentralGoogle Scholar
  109. Rai M, Deshmukh SD, Ingle AP, Gade AK (2012) Silver nanoparticles: the powerful nanoweapon against multidrug-resitant bacteria. J Appl Microbiol 12:841–852CrossRefGoogle Scholar
  110. Rai M, Ingle A (2012) Role of nanotechnology in agriculture with special reference to management of insect pest. Appl Microbiol Biotechnol 94:287–293CrossRefGoogle Scholar
  111. Rai M, Ingle A, Medici S (2018) Biomedical applications of metals, 1st edn. SpringerGoogle Scholar
  112. Rai M, Yadao A, Gade A (2009) Silver nanoparticles as a new generation of antimicrobials. Biotechnol Adv 27:76–83PubMedCrossRefPubMedCentralGoogle Scholar
  113. Rajput VD, Minkina TM, Behal A, Sushkova SN, Mandzhieva S, Singh R, Gorovtsov A, Tsitsuashvili VS, Purvis WO, Ghazaryan KA, Movsesyan HS (2018) Effects of zinc-oxide nanoparticles on soil, plants, animals and soil organisms: a review. Environ Nanotechnol Monit Manage 9:76–84Google Scholar
  114. Raskar SV, Laware SL (2014) Effect of zinc oxide nanoparticles on cytology and seed germination in onion. Int J Curr Microbiol Appl Sci 3:467–473Google Scholar
  115. Ratte HT (1999) Bioacumulation and toxicity of silver compounds: a review. Environ Toxicol Chem 18:89–108CrossRefGoogle Scholar
  116. Reidy B, Haase A, Luch A, Dawson KA, Lynch I (2013) Mechanisms of silver nanoparticles release transformation and toxicity: a critical review of current knowledge and recommendations for future studies and applications. Materials 6:2295–2350PubMedPubMedCentralCrossRefGoogle Scholar
  117. História do zinco (2018). Accessed on 7 June 18)
  118. Rodrígues-Sánchez L, Blanco MC, López-Quintela MA (2000) Eletrochemical synthesis of silver nanoparticles. J Phys Chem B 104:9683–9688CrossRefGoogle Scholar
  119. Roe D, Karandikar B, Bonn-Savage Gibbins B, Roullet J-B (2008) Antimicrobial surface funcionalization of plastic catheters by silver nanoparticles. J Antimicrob Chemother 61:869–876PubMedCrossRefPubMedCentralGoogle Scholar
  120. Russel A, Hugo WB (1994) Antimicrobial activity and action of silver. Prog Med Chem 31:351–370CrossRefGoogle Scholar
  121. Schultz C, Powell K, Crossley A, Jurkschat K, Kille P, Morgan AJ, Read D, Tyne W, Lahive E, Svendsen C, Spurgeon DJ (2015) Analytical approaches to support current understanding of exposure, uptake and distributions of engineered nanoparticles by aquatic and terrestrial organisms. Ecotoxicology 24:239–261PubMedCrossRefPubMedCentralGoogle Scholar
  122. Sendra M, Yeste MP, Gatica JM, Moreno-Garrido I, Blasco J (2017) Homoagglomeration and heteroagglomeration of TiO2, in nanoparticle and bulk form, onto freshwater and marine microalgae. Sci Total Environ 592:403–411PubMedCrossRefPubMedCentralGoogle Scholar
  123. Shah M, Fawcett D, Sharma S, Tripathy SK, Poinern GEJ (2015) Green synthesis of metallic nanoparticles via biological entities. Materials 8:7278–7308PubMedPubMedCentralCrossRefGoogle Scholar
  124. Shriver DF, Atkins PW (2008) Química Inorgânica. 4th edn. BookmanGoogle Scholar
  125. Souza GD, Rodrigues MA, Silva PP, Guerra W (2013) Prata: Breve hitórico, propriedades e aplicações. Educación Química 24:14–16CrossRefGoogle Scholar
  126. Suman TY, RadhikaRajasree SR, Kirubagaran R (2015) Evaluation of zinc oxide nanoparticles toxicity on marine algae chlorella vulgaris through flow cytometric, cytotoxicity and oxidative stress analysis. Ecotoxicol Environ Saf 113:23–30PubMedCrossRefPubMedCentralGoogle Scholar
  127. Tapiero H, Tew KD (2003) Trace elements in human physiology and pathology: zinc and metallothioneins. Biomed Pharmacother 57:399–411PubMedCrossRefPubMedCentralGoogle Scholar
  128. Tappin A, Barriada JL, Braungardt CB, Evans EH, Patey MD, Achterberg EP (2010) Dissolved silver in European estuarine and coastal Waters. Water Res 44:4204–4216PubMedCrossRefPubMedCentralGoogle Scholar
  129. Tartaj P, Morales MP, González-Carreni T, Veintemillas-Verdaguer S, Serna CJ (2005) Advances in magnetic nanoparticles for biotechnology applications. J Magn Magn Mater 290:28–34CrossRefGoogle Scholar
  130. Thakur RS, Agrawal R (2015) Application of nanotechnology in pharmaceutical formulation design and development. Current Drug Therapy 15:20–34CrossRefGoogle Scholar
  131. The Nanodatabase [WWW document] (2018). Accessed on 12 May 18)
  132. Troester M, Brauch HJ, Hofmann T (2016) Vulnerability of drinking water supplies to engineered nanoparticles. Water Res 96:255–279PubMedCrossRefPubMedCentralGoogle Scholar
  133. Vale G, Mehennaoui K, Cambier S, Libralato G, Jomini S, Domingos RF (2016) Manufactured nanoparticles in the aquatic environment-biochemical responses on freshwater organisms: a critical overview. Aquat Toxicol 170:162–174PubMedCrossRefPubMedCentralGoogle Scholar
  134. Valee BL, Falchuk KH (1993) The biochemical basis of zinc physiology. Physiol Rev 73:79–111CrossRefGoogle Scholar
  135. Windler L, Height M, Nowack B (1998) Comparative evaluation of antimicrobials for textile applications. Environ Int 53:62–73CrossRefGoogle Scholar
  136. World Silver Surver, Silver Institute (2018). Accessed on 10 May 18
  137. Yang K, Lin D, Xing B (2009) Interactions of humic acid with nanosized inorganic oxides. Langmuir 25:3571–3576PubMedCrossRefPubMedCentralGoogle Scholar
  138. Yeasmin S, Datta HK, Chaudhuri S, Malik D, Bandyopadhyay A (2017) In vitro anticancer activity of shape controlled silver nanoparticles (AgNPs) in various organ specific cell lines. J Mol Liq 242:757–766CrossRefGoogle Scholar
  139. Yin B, Ma H, Wang S, Chen S (2003) Electrochemical synthesis of silver nanoparticles under protection of poly(N-vinylpyrrolidone). J Phys Chem B 107:8898–8904CrossRefGoogle Scholar
  140. Young SY, Lee HT, Jeong SH (2003) Preparation of nanocomposite fibers for permanent antibacterial effect. J Mater Sci 38:2143–2147CrossRefGoogle Scholar
  141. Yu SJ, Yin YG, Chao JB, Shen MH, Liu JF (2014) Highly dynamics PVP-coated silver nanoparticles in aquatic environments: Chemical and morphology change induced by oxidation of Ag(0) and reduction of Ag(+). Environ Sci Technol 48:403–411PubMedCrossRefPubMedCentralGoogle Scholar
  142. Yung MM, Wong SW, Kwok KW, Liu FZ, Leung YH, Chan WT, Li XY, Djurisic AB, Leung KM (2015) Salinity-dependent toxicities of zinc oxide nanoparticles to the marine diatom Thalassiosira pseudonana. Aquat Toxicol 165:31–40PubMedCrossRefPubMedCentralGoogle Scholar
  143. Yung MMN, Fougères PA, Leung YH (2017) Physicochemical characteristics and toxicity of surface-modified zinc oxide nanoparticles to freshwater and marine microalgae. Sci Rep 7:15909PubMedPubMedCentralCrossRefGoogle Scholar
  144. Zhang C, Hu Z, Deng B (2016) Silver nanoparticles in aquatic environments: physiochemical behavior and antimicrobial mechanisms. Water Res 88:403–427PubMedCrossRefPubMedCentralGoogle Scholar
  145. Zhao X, Ren X, Zhu R, Luo Z, Ren B (2016) Zinc oxide nanoparticles induce oxidative DNA damage and ros-triggered mitochondria-mediated apoptosis in zebrafish embryos. Aquat Toxicol 180:56–70PubMedCrossRefPubMedCentralGoogle Scholar
  146. Zhou D, Keller AA (2010) Role of morphology in the aggregation kinetics of ZnO nanoparticles. Water Res 44:2948–2956PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Paulo Ricardo Franco Marcelino
    • 1
    Email author
  • Mariete Barbosa Moreira
    • 2
  • Talita Martins Lacerda
    • 1
  • Silvio Silvério da Silva
    • 1
    Email author
  1. 1.Department of Biotechnology, Engineering School of Lorena (EEL)São Paulo University (USP), CEPLorenaBrazil
  2. 2.Chemistry Institute, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), CEPAraraquaraBrazil

Personalised recommendations