Nanotoxicity of Lipid-Based Nanomedicines

  • Maria Jose Morilla
  • Eder Lilia RomeroEmail author


The impact of lipid-based nanomedicines on living beings widely differs from that caused by non-intentional exposition of metallic, metallic oxides, or carbon-based inhaled nanomaterials. The scarce data gathered on nanotoxicity of lipid-based nanomedicines is mostly related to intravenous and inhalation routes. This last is also the most important non-intentional exposition route. Intravenous nanomedicines mostly consist of antitumoral and antimycotic agents, both responsible for the induction of potentially lethal acute hypersensitivity reactions. Their nanotoxicity is explained according to different mechanisms. The so called double hit theory states that the clinical symptoms arise from the sum of the complement activation (Complement Activation Related Pseudo Allergy, CARPA effect), where the anaphylatoxins C3a, C4a and C5a induce the release of allergomedins by mast cells, and from the direct activation by nanomedicines binding to pattern recognizing receptors on macrophages; activation of bradykinin receptors B1 and B2 may contribute to the clinical picture. The rapid phagocytic response hypothesis instead, states that the complement activation would not be responsible for the clinical symptoms, whereas the hypersensitivity reaction occur by direct activation of IgG opsonized nanomedicines, of receptors expressed mostly in pulmonary intravascular macrophages (PIM). Activated PIMs thus, would release platelet activating factor (PAF), a highly active and very short-lived molecule, a mast cells activator responsible for the potentially lethal toxic effects. The nanotoxicity of inhaled liposomes, developed to treat bronchiectasis caused by bacterial infections on the other hand, was preclinically observed in rodents (species of unknown value as reliable predictors of the effects of inhaled medicines in humans), while in dogs was reported as transient, lymph node reactions (perivascular/peribronchiolar lymphoid cell infiltration) that are not readily reversible and lymphoid findings associated with foamy macrophages. In early clinical phase, the nanotoxicity manifested after repeated administrations along months, as higher airway reactogenicity, higher rates of treatment-related adverse events and higher rates of discontinuations due to adverse events. In case of liposomal amikacin—a per se irritant drug—, the nanotoxicity was related to the presence of free antibiotic; in case of liposomal ciprofloxacin, it was manifested as dyspnea, bronchospasm, hemoptysis, cough, taste disorders. Not surprisingly, the nanotoxicity of nanomedicines has not been properly anticipated by preclinical studies. More accurate disease models for example based on artificial three-dimensional human cell organs, may aid preclinical studies to acquire higher significance.


Intravenous Inhalation Liposomes Antitumoral Antimycotic Antimicrobial 


  1. Alsaleh NB, Brown JM (2018) Immune responses to engineered nanomaterials: current understanding and challenges. Curr Opin Toxicol 10:8–14PubMedCrossRefGoogle Scholar
  2. Altube MJ, Cutro A, Bakas L, Morilla MJ, Disalvo EA, Romero EL (2017) Nebulizing novel multifunctional nanovesicles: the impact of macrophage-targeted-pH-sensitive archaeosomes on pulmonary surfactant. J Mater Chem B 5:8083–8095CrossRefGoogle Scholar
  3. Bakand S, Hayes A, Dechsakulthorn F (2012) Nanoparticles: a review of particle toxicology following inhalation exposure. Inhal Toxicol 24(2):125–135PubMedCrossRefGoogle Scholar
  4. Beck-Broichsitter M, Ruppert C, Schmehl T, Günther A, Seeger W (2014) Biophysical inhibition of synthetic vs. naturally-derived pulmonary surfactant preparations by polymeric nanoparticles. Biochim Biophys Acta-Biomembr 1838(1):474–481CrossRefGoogle Scholar
  5. Bermudez LE, Blanchard JD, Hauck L, Gonda I (2015) Treatment of Mycobacterium avium subsphominissuis (MAH) lung infection with liposome-encapsulated ciprofloxacin resulted in significant decrease in bacterial load in the lung. Am J Respir Crit Care Med 191:A6293Google Scholar
  6. Bertrand N, Leroux J-C (2012) The journey of a drug-carrier in the body: an anatomo-physiological perspective. J Control Rel 161:152–163CrossRefGoogle Scholar
  7. Bilton D, Pressler T, Fajac I, Clancy JP, Sands D, Minic P, Cipolli M, LaRosa M, Galeva I, Sole A, Staab D, Dupont L, Goss CH, Hamblett N, Quittner A, Ramsey B, Gupta R, Konstan M (2013) Phase 3 efficacy and safety data from randomized, multicenter study of liposomal amikacin for inhalation (Arikace) compared with TOBI in cystic fibrosis patients with chronic infection due to Pseudomonas aeruginosa. North American Cystic Fibrosis Conference; Salt Lake City, Utah. Pediatr Pulmonol 36:290Google Scholar
  8. Bobo D, Robinson KJ, Islam J, Thurecht KJ, Corrie SR (2016) Nanoparticle-based medicines: a review of FDA-approved materials and clinical trials to date. Pharm Res 33(10):2373–2387PubMedCrossRefGoogle Scholar
  9. Borm P, Cassee FR, Oberdörster G (2015) Lung particle overload: old school—new insights? Part Fibre Toxicol 12:10PubMedPubMedCentralCrossRefGoogle Scholar
  10. Cabriales S, Bresnahan J, Testa D, Espina BM, Scadden DT, Ross M, Gill PS (1998) Extravasation of liposomal daunorubicin in patients with AIDS-associated Kaposi’s sarcoma: a report of four cases. Oncol Nurs Forum 25:67–70PubMedGoogle Scholar
  11. Caster JM, Patel AN, Zhang T, Wang A (2017) Investigational nanomedicines in 2016: a review of nanotherapeutics currently undergoing clinical trials. Wiley Interdiscip Rev Nanomed Nanobiotechnol 9(1)Google Scholar
  12. Cedervall T, Lynch I, Lindman S, Berggard T, Thulin E, Nilsson H, Dawson KA, Linse S (2007) Understanding the nanoparticle–protein corona using methods to quantify exchange rates and affinities of proteins for nanoparticles. Proc Natl Acad Sci USA 104:2050–2055PubMedCrossRefGoogle Scholar
  13. Chambers E, Mitragotri S (2004) Prolonged circulation of large polymeric nanoparticles by non-covalent adsorption on erythrocytes. J Control Release 100:111–119PubMedCrossRefGoogle Scholar
  14. Champion JA, Mitragotri S (2006) Role of target geometry in phagocytosis. Proc Natl Acad Sci USA 103(13):4930–4934PubMedCrossRefGoogle Scholar
  15. Chen F, Wang G, Griffin JI, Brenneman B, Banda NK, Holers VM, Backos DS, Wu L, Moghimi SM, Simberg D (2017) Complement proteins bind to nanoparticle protein corona and undergo dynamic exchange in vivo. Nat Nanotechnol 12:387–393PubMedCrossRefGoogle Scholar
  16. Chhoden T, Clausen PA, Larsen ST, Nørgaard AW, Lauritsen FR (2015) Interactions between nanoparticles and lung surfactant investigated by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Rapid Commun Mass Spectrom 29(11):1080–1086PubMedCrossRefGoogle Scholar
  17. Chinoy MR, Fisher AB, Shuman H (1994) Confocal imaging of time-dependent internalization and localization of NBD-PC in intact rat lungs. Am J Physiol 266(6 Pt 1):L713–L721CrossRefGoogle Scholar
  18. Churg A, Brauer M, del Carmen Avila-Casado M, Fortoul TI, Wright JL (2003) Chronic exposure to high levels of particulate air pollution and small airway remodeling. Environ Health Perspect 111:714–718PubMedPubMedCentralCrossRefGoogle Scholar
  19. Churg A, Wright JL (2002) Airway wall remodelling induced by occupational mineral dusts and air pollutant particles. Chest 122:306–309CrossRefGoogle Scholar
  20. Cipolla D, Blanchard J, Gonda I (2016) Development of liposomal ciprofloxacin to treat lung infections. Pharmaceutics 8:6PubMedCentralCrossRefPubMedGoogle Scholar
  21. Cipolla D, Gonda I, Chan H-K (2013) Liposomal Formulations for Inhalation. Ther Deliv 4:1047–1072PubMedCrossRefGoogle Scholar
  22. Cipolla D, Shekunov B, Blanchard J, Hickey A (2014) Lipid-based carriers for pulmonary products: preclinical development and case studies in humans. Adv Drug Del Rev 75:53–80CrossRefGoogle Scholar
  23. Commission Recommendation of 18 October 2011 on the definition of nanomaterial.
  24. Committee on Hazardous Substances, BAuA (2015) Assessment Criterion (Reference Value) for Granular Biopersistent Particles Without Known Significant Specific Toxicity (Nanoscaled GBP) (Respirable Dust) Generated From Manufactured Ultrafine Particles. 910/nanoscaled-GBP.pdf
  25. Conley J, Yang H, Wilson T, Blasetti K, Di Ninno V, Schnell G, Wong JP (1997) Aerosol delivery of liposome-encapsulated ciprofloxacin: aerosol characterization and efficacy against Francisella tularensis infection in mice. Antimicrob Agents Chemother 41(6):1288–1292PubMedPubMedCentralCrossRefGoogle Scholar
  26. Coppo R, Amore A (2000) Importance of the bradykinin-nitric oxide synthase system in the hypersensitivity reactions of chronic haemodialysis patients. Nephrol Dial Transpl 15:1288–1290CrossRefGoogle Scholar
  27. Crommelin DJA, Shah VP, Klebovich I, McNeil SE, Weinstein V, Flühmann B, Mühlebach S, de Vlieger JS (2015) The similarity question for biological and non-biological complex drugs. Eur J Pharm Sci 76:10–17PubMedCrossRefGoogle Scholar
  28. Dankovic D, Kuempel E, Wheeler M (2007) An approach to risk assessment for TiO2. Inhal Toxicol 19:205–212PubMedCrossRefGoogle Scholar
  29. Davis BK, Wen H, Ting JP (2011) The inflammasome NLRs in immunity, inflammation, and associated diseases. Annu Rev Immunol 29:707–735PubMedPubMedCentralCrossRefGoogle Scholar
  30. Deng ZJ, Liang M, Monteiro M, Toth I, Minchin RF (2011) Nanoparticle-induced unfolding of fibrinogen promotes Mac-1 receptor activation and inflammation. Nat Nanotechnol 6:39–44PubMedCrossRefGoogle Scholar
  31. Docter D, Westmeier D, Markiewicz M, Stolte S, Knauer SK, Stauber RH (2015) The nanoparticle biomolecule corona: lessons learned—challenge accepted? Chem Soc Rev 44:6094–6121PubMedCrossRefGoogle Scholar
  32. Donaldson K, Tran L, Jimenez LA, Duffin R, Newby DE, Mills N, MacNee W, Stone V (2005) Combustion-derived nanoparticles: a review of their toxicology following inhalation exposures. Part Fibre Toxicol 2:10PubMedPubMedCentralCrossRefGoogle Scholar
  33. Donaldson K, Schinwald A, Murphy F, Cho WS, Duffin R, Tran L, Poland C (2013) The biologically effective dose in inhalation nanotoxicology. Acc Chem Res 46(3):723–732PubMedCrossRefGoogle Scholar
  34. Duffin R, Tran CL, Clouter A, Brown DM, Macnee W, Stone V, Donaldson K (2002) The Importance of surface area and specific reactivity in the acute pulmonary inflammatory response to particles. Ann Occup Hyg 46:242–245Google Scholar
  35. Dushianthan A, Cusack R, Goss V, Postle AD, Grocott MPW (2012) Clinical review: Exogenous surfactant therapy for acute lung injury/acute respiratory distress syndrome–where do we go from here? Crit Care 16:238–248PubMedPubMedCentralCrossRefGoogle Scholar
  36. EMA. Withdrawal assessment report EMA/493973/2016Google Scholar
  37. EU Scientific Committee Recommendation on the definition of a nanomaterial (2011/696/EU).
  38. European Science Foundation (2005) Nanomedicine, an ESF–European Medical Research Councils (EMRC) forward look reportGoogle Scholar
  39. European Technology Platform on Nanomedicine, Nanotechnology for Health, Vision paper and basis for a strategic research agenda for nanomedicine, EC Publication Office, September 2005Google Scholar
  40. European Union 004-EN-N (2010) Scientific Committee on Emerging and Newly Identified Health Risks. Scientific Basis for the Definition of the Term “nanomaterial”; BN 978-92-79-12757-1; ND-AS-09
  41. European Food Safety Agency (EFSA), EU Regulation No. 1169/2011. European Commission 2011Google Scholar
  42. Fadeel B (2012) Clear and present danger? Engineered nanoparticles and the immune system. Swiss Med Wkly 142:w13609PubMedGoogle Scholar
  43. Fan Q, Wang YE, Zhao X, Loo JS, Zuo YY (2011) Adverse biophysical effects of hydroxyapatite nanoparticles on natural pulmonary surfactant. ACS Nano 5(8):6410–6416PubMedPubMedCentralCrossRefGoogle Scholar
  44. Farhangrazi ZS, Moghimi SM (2016) Materials etiquette and complement responses. Curr Bionanotechnol 2:6–10CrossRefGoogle Scholar
  45. FDA (2014) Considering whether an FDA-regulated product involves the application of nanotechnology Guidance for Industry.
  46. Frohlich E (2012) The role of surface charge in cellular uptake and cytotoxicity of medical nanoparticles. Int J Nanomedicine 7:5577–5591PubMedPubMedCentralCrossRefGoogle Scholar
  47. Ganguly P, Breen A, Pillai SC (2018) Toxicity of nanomaterials: exposure, pathways, assessment and recent advances. ACS Biomater Sci Eng. Scholar
  48. Ge C, Du J, Zhao L, Wang L, Liu Y, Li D, Yang Y, Zhou R, Zhao Y, Chai Z, Chen C (2011) Binding of blood proteins to carbon nanotubes reduces cytotoxicity. Proc Natl Acad Sci USA 108:16968–16973PubMedCrossRefGoogle Scholar
  49. Gebel T, Foth H, Damm G, Freyberger A, Kramer P-J, Lilienblum W, Röhl C, Schupp T, Weiss C, Wollin C-M, Georg J (2014) Manufactured nanomaterials: categorization and approaches to hazard assessment Hengstler. Arch Toxicol 88:2191–2211PubMedCrossRefGoogle Scholar
  50. Gehr P, Bachofen M, Weibel ER (1978) The normal human lung: ultrastructure and morphometric estimation of diffusion capacity. Respir Physiol 32:121–140PubMedCrossRefGoogle Scholar
  51. Geiser M (2010) Update on macrophage clearance of inhaled micro- and nanoparticles. J Aerosol Med Pulm Drug Deliv 23:207–217PubMedCrossRefGoogle Scholar
  52. Griffin JI, Wang G, Smith WJ, Vu VP, Scheinman R, Stitch D, Moldovan R, Moghimi SM, Simberg D (2017) Revealing dynamics of accumulation of systemically injected liposomes in the skin by intravital microscopy. ASC Nano 11(11):11584. Scholar
  53. Hamad I, Al-Hanbali O, Hunter AC, Rutt KJ, Andresen TL, Moghimi SM (2010) Distinct polymer architecture mediates switching of complement activation pathways at the nanosphere-serum interface: implications for stealth nanoparticle engineering. ACS Nano 4:6629–6638PubMedCrossRefGoogle Scholar
  54. Hamad I, Hunter AC, Szebeni J, Moghimi SM (2008) Poly(ethylene glycol)s generate complement activation products in human serum through increased alternative pathway turnover and a MASP-2-dependent process. Mol Immunol 46:225–232PubMedCrossRefGoogle Scholar
  55. Hamad I, Hunter AC, Moghimi SM (2013) Complement monitoring of Pluronic 127 gel and micelles: suppression of copolymer-mediated complement activation by elevated serum levels of HDL, LDL, and apolipoproteins A1 and B-100. J Control Release 170:167–174PubMedCrossRefGoogle Scholar
  56. Harishchandra RK, Saleem M, Galla H-J (2010) Nanoparticle interaction with model lung surfactant monolayers. J R Soc Interface 7(Suppl 1):S15–S26PubMedGoogle Scholar
  57. Hayes AJ, Bakand S (2014) Toxicological perspectives of inhaled therapeutics and nanoparticles. Expert Opin Drug Metab Toxicol 10(7):933–947PubMedCrossRefGoogle Scholar
  58. Heyder J, Gebhart J, Rudolf G, Schiller CF, Stahlhofen W (1986) Deposition of particles in the human respiratory tract in the size range 0.005–15 μm. J Aerosol Sci 17:811–825CrossRefGoogle Scholar
  59. Hinds WC (1999) Uniform particle motion. In: Aerosol technology: properties, behavior and measurement of airborne particles, 2nd edn, p. 53–55Google Scholar
  60. Holers VM (2014) Complement and its receptors: new insights into human disease. Annu Rev Immunol 32:433–459PubMedCrossRefGoogle Scholar
  61. Hu W, Peng C, Lv M, Li X, Zhang Y, Chen N, Fan C, Huang Q (2011) Protein corona-mediated mitigation of cytotoxicity of graphene oxide. ACS Nano 5:3693–3700PubMedCrossRefGoogle Scholar
  62. Insmed Company website. Accessed on 24 July 2018Google Scholar
  63. ISO/TS 80004-1:2015 (2015) Nanotechnology—Vocabulary—Part 1: core terms. International Organization for Standardization: Geneva, SwitzerlandGoogle Scholar
  64. ISO/TS 80004-2:2015 Nanotechnologies—Vocabulary—Part 2: nano-objectsGoogle Scholar
  65. Jeevanandam J, Barhoum A, Chan YS, Dufresne A, Danquah MK (2018) Review on nanoparticles and nanostructured materials: history, sources, toxicity and regulations. Beilstein J Nanotechnol 9:1050–1074PubMedPubMedCentralCrossRefGoogle Scholar
  66. Jones CV, Williams TM, Walker KA, Dickinson H, Sakkal S, Rumballe BA, Little MH, Jenkin G, Ricardo SD (2013) M2 macrophage polarisation is associated with alveolar formation during postnatal lung development. Respir Res 14:41PubMedPubMedCentralCrossRefGoogle Scholar
  67. Krafft MP (2015) Overcoming inactivation of the lung surfactant by serum proteins: a potential role for fluorocarbons? Soft Matter 11:5982–5994PubMedCrossRefGoogle Scholar
  68. Kreyling WG, Semmler-Behnke M, Seitz J, Scymczak W, Wenk A, Mayer P, Takenaka S, Oberdörster G (2009) Size dependence of the translocation of inhaled iridium and carbon nanoparticle aggregates from the lung of rats to the blood and secondary target organs. Inhal Toxicol 21(Sl):55–60PubMedCrossRefGoogle Scholar
  69. Kuempel ED, Attfield MD, Stayner LT, Castranova V (2014) Human and animal evidence supports lower occupational exposure limits for poorly-soluble respirable particles: letter to the Editor re: ‘Low-toxicity dusts: current exposure guidelines are not sufficiently protective’ by Cherrie, Brosseau, Hay and Donaldson. Ann Occup Hyg 58(9):1205–1208PubMedPubMedCentralGoogle Scholar
  70. Lachmann B, Robertson B. Vogel J (1980) In vivo lung lavage as an experimental model of the respiratory distress syndrome. Acta Anaesth Scand 24:231–236PubMedCrossRefGoogle Scholar
  71. Lazarou J, Pomeranz BH, Corey PN (1998) JAMA. Incidence of adverse drug reactions in hospitalized patients: a meta-analysis of prospective studies 15;279(15):1200–1205PubMedCrossRefGoogle Scholar
  72. Lesniak A, Fenaroli F, Monopoli MP, Aberg C, Dawson KA, Salvati A (2012) Effects of the presence or absence of a protein corona on silica nanoparticle uptake and impact on cells. ACS Nano 6:5845–5857PubMedCrossRefGoogle Scholar
  73. Li N, Xia T, Nel AE (2008) The role of oxidative stress in ambient particulate matter-induced lung diseases and its implications in the toxicity of engineered nanoparticles. Free Radic Biol Med 44:1689–1699PubMedPubMedCentralCrossRefGoogle Scholar
  74. Lopez-Rodriguez E, Pérez-Gil J (2014) Structure-function relationships in pulmonary surfactant membranes: from biophysics to therapy. Biochim Biophys Acta-Biomembr 1838(6):1568–1585CrossRefGoogle Scholar
  75. Lundqvist M, Stigler J, Elia G, Lynch I, Cedervall T, Dawson KA (2008) Nanoparticlesize and surface properties determine the protein corona with possible implications for biological impacts. Proc Natl Acad Sci USA 105:14265–14270PubMedCrossRefGoogle Scholar
  76. MAK Commission (2014) The MAK-collection part I, MAK value documentations 2014. In: Deutsche (ed) Forschungsgemeinschaft. The MAK collection for occupational health and safety. Wiley-VCH Verlag GmbH & Co, KGaA, p. 320Google Scholar
  77. Mallick S, Choi JS (2014) Liposomes: versatile and biocompatible nanovesicles for efficient biomolecules delivery. J Nanosci Nanotechnol 14(1):755–765PubMedCrossRefGoogle Scholar
  78. Mansour HM, Rhee YS, Wu X (2009) Nanomedicine in pulmonary delivery. Int J Nanomedicine 4:299–319PubMedPubMedCentralCrossRefGoogle Scholar
  79. Martin TR, Frevert CW (2005) Innate immunity in the lungs. Proc Am Thorac Soc 2:403–411PubMedPubMedCentralCrossRefGoogle Scholar
  80. Martini WZ, Chinkes DL, Barrow RE, Murphey ED, Wolfe RR (1999) Lung surfactant kinetics in conscious pigs. Am J Physiol 277(1 Pt 1):E187–E195PubMedGoogle Scholar
  81. Moghimi M, Hunter C, Dadswell CM, Savay S, Alving C, Szebeni J (2004) Causative factors behind poloxamer 188 (Pluronic F68, Flocor trade mark)-induced complement activation in human sera; A protective role against poloxamer mediated complement activation by elevated serum lipoprotein levels. Biochim Biophys Acta 1689:103–113PubMedCrossRefGoogle Scholar
  82. Moghimi SM (2018) Nanomedicine safety in preclinical and clinical development: focus on idiosyncratic injection/infusion reactions. Drug Discov Today 23(5):1034–1042PubMedCrossRefGoogle Scholar
  83. Moghimi SM, Andersen AJ, Hashem SH, Lettiero B, Ahmadvand D, Hunter AC, Andresen TL, Hamad I, Szebeni J (2010) Complement activation cascade triggered by PEG-PL engineered nanomedicines and carbon nanotubes: the challenges ahead. J Control Release 146:175–181PubMedCrossRefGoogle Scholar
  84. Moghimi SM, Hamad I, Andresen TL, Jørgensen K, Szebeni J (2006) Methylation of the phosphate oxygen moiety of phospholipid-methoxy(polyethylene glycol) conjugate prevents PEGylated liposome-mediated complement activation and anaphylatoxin production. FASEB J 20:2591–2593PubMedCrossRefGoogle Scholar
  85. Moghimi SM, Andersen AJ, Ahmadvand D, Wibroe PP, Andresen TL, Hunter AC (2011) Material properties in complement activation. Adv Drug Deliv Rev 63:1000–1007PubMedCrossRefGoogle Scholar
  86. Moghimi SM, Wibroe PP, Helvig SY, Farhangrazi ZS, Hunter AC (2012) Genomic perspectives in inter-individual adverse responses following nanomedicine administration: the way forward. Adv Drug Deliver Rev 64:1385–1393CrossRefGoogle Scholar
  87. Money-Kyrle JF, Bates F, Ready J, Gazzard BG, Phillips RH, Boag FC (1993) Liposomal daunorubicin in advanced Kaposi’s sarcoma: a phase II study. Clin Oncol (R Coll Radiol) 5:367–371CrossRefGoogle Scholar
  88. Monopoli MP, Bombelli FB, Dawson KA (2011) Nanobiotechnology: nanoparticle coronas take shape. Nat Nanotechnol 6:11–12PubMedCrossRefGoogle Scholar
  89. Morawska L, Hofmann W, Hitchins-Loveday J, Swanson C, Mengersen K (2005) Experimental study of the deposition of combustion aerosols in the human respiratory tract. J Aerosol Sci 36:939–957CrossRefGoogle Scholar
  90. Morrow PE (1988) Possible mechanisms to explain dust overloading of the lungs. Fundam Appl Toxicol 10(3):369–384PubMedCrossRefGoogle Scholar
  91. Nanomedicine 2020 (May 2013) Contribution of nanomedicine to horizon 2020. ETP Nanomedicine—NANOMED2020Google Scholar
  92. Napierska D, Thomassen LC, Rabolli V, Lison D, Gonzalez L, Kirsch-Volders M, Martens JA, Hoet PH (2009) Size-dependent cytotoxicity of monodisperse silica nanoparticles in human endothelial cells. Small 5:846–853PubMedCrossRefGoogle Scholar
  93. Neville M, Liu S, Artis C, Dadey E, Gupta R (2009) Functionality of foamy alveolar macrophages after inhalation of aerosolized liposomal Amikacin (ArikaceTM). Pediatr Pulmonol 44:109–212CrossRefGoogle Scholar
  94. NIH Roadmap for Medical Research (2008)
  95. Nel AE, Mädler L, Velegol D, Xia T, Hoek Van, Somasundaran S, Klaessig F, Castranova V, Thompson M (2009) Understanding biophysicochemical interactions at the nano–bio interface. Nat Mater 8:543–557PubMedPubMedCentralCrossRefGoogle Scholar
  96. O’Donnell A, Swarnakar R, Yashina L, Nikolova P, Marinov R, Waghray P (2009) A placebo-controlled study of liposomal amikacin for inhalation (ARIKACE™) nebulized once-daily in the treatment of bronchiectasis patients with chronic Pseudomonas aeruginosa lung infection. Eur Respir J 34(Suppl. 53):1361Google Scholar
  97. Oberdörster G (2010) Safety assessment for nanotechnology and nanomedicine: concepts of nanotoxicology. J Intern Med 267:89–105PubMedCrossRefGoogle Scholar
  98. Oberdörster G, Ferin J, Morrow PE (1992) Volumetric loading of alveolar macrophages (AM): a possible basis for diminished AM-mediated particle clearance. Exp Lung Res 18(1):87–104PubMedCrossRefGoogle Scholar
  99. Oberdorster G, Kane AB, Klaper RD, Hurt RH (2013) Nanotoxicology. In: Klaassen CD (ed) Casarett and Doull’s toxicology-the basic science of poisons. McGraw Hill, New York, NY, USA, pp. 1189–1229Google Scholar
  100. Oberdorster G, Maynard A, Donaldson K, Castranova V, Fitzpatrick J, Ausman K, Carter J, Karn B, Kreyling W, Lai D, Olin S, Monteiro-Riviere N, Warheit D, Yang H (2005) Principles for characterizing the potential human health effects from exposure to nanomaterials: elements of a screening strategy. Part Fibre Toxicol 2:8PubMedPubMedCentralCrossRefGoogle Scholar
  101. O’Dwyer PJ, Weiss R (1984) Hypersensitivity reactions induced by etoposide. Cancer Treat Rep 68:959–961PubMedGoogle Scholar
  102. Olivier KN, Maas-Moreno R, Whatley M, Cheng KT, Lee J-H, Fiorentino C, Shaffer R, Macdonald S, Gupta R, Corcoran TE, Malinin VS, Eagle G, Perkins W, Paik C, Chen C (2016) Airway deposition and retention of liposomal amikacin for inhalation in patients with pulmonary nontuberculous mycobacterial disease. Am J Respir Crit Care Med 193:A3732Google Scholar
  103. OSHA Occupational safety and health administration. Safety and health tips: nanotechnology
  104. Padmore T, Stark C, Turkevich LA, Champion JA (2017) Quantitative analysis of the role of fiber length on phagocytosis and inflammatory response by alveolar macrophages. Biochim Biophys Acta 1861(2):58–67CrossRefGoogle Scholar
  105. Patton JS, Byron PR (2007) Inhaling medicines: delivering drugs to the body through the lungs. Nat Rev Drug Discov 6:67–74PubMedCrossRefGoogle Scholar
  106. Pauluhn J (2011) Poorly soluble particulates: searching for a unifying denominator of nanoparticles and fine particles for DNEL estimation. Toxicology 279(1–3):176–188PubMedCrossRefGoogle Scholar
  107. Pauluhn J (2014) Repeated inhalation exposure of rats to an anionic high molecular weight polymer aerosol: application of prediction models to better understand pulmonary effects and modes of action. Exp Toxicol Pathol 66(5–6):243–256PubMedCrossRefGoogle Scholar
  108. Pedersen MB, Zhou X, Larsen EK, Sørensen US, Kjems J, Nygaard JV, Nyengaard JR, Meyer RL, Boesen T, Vorup-Jensen T (2010) Curvature of synthetic and natural surfaces is an important target feature in classical pathway complement activation. J Immunol 184:1931–1945PubMedCrossRefGoogle Scholar
  109. Pelaz B, Charron G, Pfeiffer C, Zhao Y, de la Fuente JM, Liang XJ, Parak WJ, Del Pino P (2013) Interfacing engineered nanoparticles with biological systems: anticipating adverse nano-bio interactions. Small 9:1573–1584PubMedCrossRefGoogle Scholar
  110. Pérez de la Ossa DH (2014) Quality aspects of nano-based medicines. In: SME Workshop: Focus on quality for medicines containing chemical entities. London, 4 April 2014Google Scholar
  111. Peters A, von Klot S, Heier M, Trentinaglia I, Hormann A, Wichmann HE, Löwel H (2004) Exposure to traffic and the onset of myocardial infarction. N Engl J Med 351:1721–1730PubMedCrossRefGoogle Scholar
  112. Piantadosi CA, Schwartz DA (2004) The acute respiratory distress syndrome. Ann Intern Med 141:460–470PubMedCrossRefGoogle Scholar
  113. Possmayer F (2004) Physicochemical aspects of pulmonary surfactant. In: Polin RA, Fox WW, Abman SH (eds) Fetal and neonatal physiology. WB. Saunders Company, Philadelphia, pp 1014–1034CrossRefGoogle Scholar
  114. Rabolli V, Badissi AA, Devosse R, Uwambayinema F, Yakoub Y, Palmai-Pallag M, Lebrun A, De Gussem V, Couillin I, Ryffel B, Marbaix E, Lison D, Huaux F (2014) The alarmin IL-1alpha is a master cytokine in acute lung inflammation induced by silica micro- and nanoparticles. Part Fibre Toxicol 11:69PubMedPubMedCentralCrossRefGoogle Scholar
  115. Ramachandran G, Howard J, Maynard A, Philbert M (2012) Handling worker and third-party exposures to nanotherapeutics during clinical trials. J Law Med Ethics 40:856–864PubMedCrossRefGoogle Scholar
  116. Rinderknecht A, Oberdörster G, de Mesy Bentley K et al (2009) Serum protein coated gold nanoparticles in the perfused human term placenta. Toxicologist 108Google Scholar
  117. Ring J, Messmer K (1977) Incidence and severity of anaphylactoid reactions to colloid volume substitutes. Lancet 1:466–469CrossRefGoogle Scholar
  118. Ring J, Grosber M, Mohrenschlager M, Brockow K (2010) Anaphylaxis: acute treatment and management. Chem Immunol Allergy 95:201–210Google Scholar
  119. Robertson B (1984) Pathology and pathophysiology of neonatal surfactant deficiency (“respiratory distress syndrome”, “hyaline membrane disease”). In: Robertson B, Van Golde LMG, Batenburg JJ (eds) Pulmonary surfactant. Elsevier Science Publishers, Amsterdam, pp 383–418Google Scholar
  120. Roller M, Pott F (2006) Lung tumor risk estimates from rat studies with not specifically toxic granular dusts. Ann N Y Acad Sci 1076:266–280PubMedCrossRefGoogle Scholar
  121. Roller J, Laschke MW, Tschernig T, Schramm R, Veith NT, Thorlacius H, Menger MD (2011) How to detect a dwarf: in vivo imaging of nanoparticles in the lung. Nanomedicine 7(6):753–762PubMedCrossRefGoogle Scholar
  122. Roller M (2003) Dose-response relationships of granular bio-durable dusts in rat lungs: does a cancer threshold exist? Eur J Oncol 8(4):277–293Google Scholar
  123. Rowinsky EK, Eisenhauer EA, Chaudhry V, Arbuck SG, Donehower RC (1993) Clinical toxicities encountered with paclitaxel (Taxol). Semin Oncol 20:1–15PubMedGoogle Scholar
  124. Rubenfeld GD, Caldwell E, Peabody E, Weaver J, Martin DP, Neff M, Stern EJ, Hudson LDN (2005) Incidence and outcomes of acute lung injury. Engl J Med 353:11685–11693CrossRefGoogle Scholar
  125. Rubins JB (2003) Alveolar macrophages—wielding the double-edged sword of inflammation. Am J Respir Crit Care Med 167:103–104PubMedCrossRefGoogle Scholar
  126. Rugonyi S, Biswas SC, Hall SB (2008) The biophysical function of pulmonary surfactant. Respir Physiol Neurobiol 163(1):244–255PubMedPubMedCentralCrossRefGoogle Scholar
  127. Schleh C, Hohlfeld JM (2009) Interaction of nanoparticles with the pulmonary surfactant system. Inhalation Toxicol 21(sup1):97–103CrossRefGoogle Scholar
  128. Schmid O, Stoeger T (2016) Surface area is the biologically most effective dosemetric for acute nanoparticle toxicity in the lung. J Aerosol Sci 99:133–143CrossRefGoogle Scholar
  129. Schneberger D, Aharonson-Raz K, Singh B (2012) Pulmonary intravascular macrophages and lung health: what are we missing? Am J Physiol Lung Cell Mol Physiol 302:L498–L503PubMedCrossRefGoogle Scholar
  130. Schurch S (1982) Surface tension at low lung volumes: dependence on time and alveolar size. Respir Physiol 48:339–355PubMedCrossRefGoogle Scholar
  131. Sculier JP, Coune A, Brassinne C, Laduron C, Atassi G, Ruysschaert JM, Fruhling J (1986) Intravenous infusion of high doses of liposomes containing NSC251635, a water-insoluble cytostatic agent. A pilot study with pharmacokinetic data. J Clin Oncol 4:789–797PubMedCrossRefGoogle Scholar
  132. Sharifi S, Behzadi S, Laurent S, Laird Forrest M, Stroeve M, Mahmoud M (2012) Toxicity of nanomaterials. Chem Soc Rev 41:2323–2343CrossRefGoogle Scholar
  133. Shi C, Zhang X, Chen Z, Robinson MK, Simon DI (2001) Leukocyte integrin Mac-1 recruits Toll/interleukin-1 receptor superfamily signalling intermediates to modulate NF-κB activity. Circ Res 89:859–865PubMedCrossRefGoogle Scholar
  134. Simard JC, Vallieres F, de Liz R, Lavastre V, Girard D (2015) Silver nanoparticles induce degradation of the endoplasmic reticulum stress sensor activating transcription factor-6 leading to activation of the NLRP-3 inflammasome. J Biol Chem 290(9):5926–5939PubMedPubMedCentralCrossRefGoogle Scholar
  135. Smith T (2018) Clinical team leader division of anti-infective products. FDA Opening RemarksGoogle Scholar
  136. Strait MD (2002) Pathways of anaphylaxis in the mice. J Allergy Clin Immunol 109:658–668PubMedCrossRefGoogle Scholar
  137. Szebeni J, Muggia F, Gabizon A, Barenholz Y (2011) Activation of complement by therapeutic liposomes and other lipid excipient-based therapeutic products: prediction and prevention. Adv Drug Deliv Rev 63:1020–1030PubMedCrossRefGoogle Scholar
  138. Szebeni J (2018) Mechanism of nanoparticle-induced hypersensitivity in pigs: complement or not complement? Drug Discov Today 23(3):487–492PubMedCrossRefGoogle Scholar
  139. Szebeni J, Alving CR, Savay S, Barenholz Y, Priev A, Danino D, Talmon Y (2001) Formation of complement-activating particles in aqueous solutions of Taxol: possible role in hypersensitivity reactions. Int Immunopharm 1:721–735CrossRefGoogle Scholar
  140. Szebeni J, Muggia FM, Alving CR (1998) Complement activation by Cremophor EL as a possible contributor to hypersensitivity to paclitaxel: an in vitro study. J Natl Cancer Inst 90:300–330PubMedCrossRefGoogle Scholar
  141. Szebeni J, Fontana JL, Wassef NM, Mongan PD, Morse DS, Dobbins DE, Stahl GL, Bünger R, Alving CR (1999) Hemodynamic changes induced by liposomes and liposome-encapsulated hemoglobin in pigs: a model of pseudollargic cardiopulmonary reactions to liposomes. Role of complement and inhibition by soluble CR1 and anti-C5a antibody. Circulation 99:2302–2309PubMedCrossRefGoogle Scholar
  142. Szebeni J, Fishbane S, Hedenus M, Howaldt S, Locatelli F, Patni S, Rampton D, Weiss G, Folkersen J (2015) Hypersensitivity to intravenous iron: classification, terminology, mechanisms and management. Br J Pharmacol 172:5025–5036PubMedPubMedCentralCrossRefGoogle Scholar
  143. Technical fact sheet—Nanomaterials, November 2017Google Scholar
  144. Tenzer S, Docter D, Kuharev J, Musyanovych A, Fetz V, Hecht R, Schlenk F, Fischer D, Kiouptsi K, Reinhardt C, Landfester K, Schild H, Maskos M, Knauer SK, Stauber RH (2013) Rapid formation of plasma protein corona critically affects nanoparticle pathophysiology. Nat Nanotechnol 8:772–781PubMedCrossRefGoogle Scholar
  145. Vance ME, Kuiken T, Vejerano EP, McGinnis SP, Hochella MF Jr, Rejeski D, Hull MS (2015) Nanotechnology in the real world: redeveloping the nanomaterial consumer products inventory. Beilstein J Nanotechnol 6:1769–1780PubMedPubMedCentralCrossRefGoogle Scholar
  146. Ventola C, Lee MS (2017) Progress in nanomedicine: approved and investigational nanodrugs. P&T 42:742–755Google Scholar
  147. Verresen L, Fink E, Lemke HD, Vanrenterghem Y (1994) Bradykinin is a mediator of anaphylactoid reactions during hemodialysis with AN69 membranes. Kidney Int 45:1497–1503PubMedCrossRefGoogle Scholar
  148. Vogler EA (2012) Protein adsorption in three dimensions. Biomaterials 33:1201–1237PubMedCrossRefGoogle Scholar
  149. Vroman L (1962) Effect of absorbed proteins on the wettability of hydrophilic and hydrophobic solids. Nature 196:476–477PubMedCrossRefGoogle Scholar
  150. Wang L, Li J, Pan J, Jiang X, Ji Y, Li Y, Qu Y, Zhao Y, Wu X, Chen C (2013a) Revealing the binding structure of the protein corona on gold nanorods using synchrotron radiation-based techniques: understanding the reduced damage in cell membranes. J Am Chem Soc 135:17359–17368PubMedCrossRefGoogle Scholar
  151. Wang X, Podila R, Shannahan JH, Rao AM, Brown JM (2013b) Intravenously delivered graphene nanosheets and multiwalled carbon nanotubes induce site-specific Th2 inflammatory responses via the IL-33/ST2 axis. Int J Nanomedicine 8:1733–1748PubMedPubMedCentralGoogle Scholar
  152. Warner AE (1996) Pulmonary intravascular macrophages. Role in acute lung injury. Clin Chest Med 17:125–135PubMedCrossRefGoogle Scholar
  153. Weibel ER (1963) Morphometry of the Human Lung; Springer: New York, NY, USACrossRefGoogle Scholar
  154. Weissig V, Pettinger TK, Murdock N (2014) Nanopharmaceuticals (part 1): products on the market. Int J Nanomed 9:4357–4373CrossRefGoogle Scholar
  155. Wibro PP, Anselmo AC, Nilsson PH, Sarode A, Gupta V, Urbanics R, Szebeni J, Hunter AC, Mitragotri S, Mollnes TE, Moghimi SM (2017) Bypassing adverse injection reactions to nanoparticles through shape modification and attachment to erythrocytes. Nat Nanotechnol 12:589–590Google Scholar
  156. Wibroe PP, Ahmadvand D, Oghabian MA, Yaghmur A, Moghimi SM (2016) An integrated assessment of morphology, size, and complement activation of the PEGylated liposomal doxorubicin products Doxil®, Caelyx®, DOXOrubicin, and SinaDoxosome. J Control Release 221:1–8PubMedCrossRefGoogle Scholar
  157. Wolfram J, Yang Y, Shen J, Moten A, Chen C, Shen H, Ferrari M, Zhao Y (2014) The nano-plasma interface: implications of the protein corona. Colloids Sur B Biointerfaces 124:17–24CrossRefGoogle Scholar
  158. Wright JR (2005) Immunoregulatory functions of surfactant proteins. Nat Rev Immunol 5:58–68PubMedCrossRefGoogle Scholar
  159. Zhu M, Nie G, Meng H, Xia T, Nel A, Zhao Y (2013) Physicochemical properties determine nanomaterial cellular uptake, transport, and fate. Acc Chem Res 46:622–631PubMedCrossRefGoogle Scholar
  160. Zuo G, Kang SG, Xiu P, Zhao Y, Zhou R (2013) Interactions between proteins and carbon-based nanoparticles: exploring the origin of nanotoxicity at the molecular level. Small 9:1546–1556PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Department of Science and TechnologyNanomedicines Research and Development Center, Quilmes National UniversityBuenos AiresArgentina

Personalised recommendations