Ecotoxicity of Nanometals: The Problems and Solutions

  • Irina A. ShuryginaEmail author
  • Larisa M. Sosedova
  • Mikhail A. Novikov
  • Eugeniy A. Titov
  • Michael G. Shurygin


The chapter deals with the ecotoxicity of nanometals. It presents the results of studying the effects of metal nanoparticles on environmental objects such as plants, animals, soil, water and microorganisms. The study of metal nanoparticles effects on the algae showed that it has pronounced dose-dependent effects and the level of influence depends on the type of nanoparticle, its size and the type of algae. Some nanocomposites, such as cerium oxide, do not lose their toxic properties even in a bound state. It is demonstrated that Fe2O3 has the lowest destabilization risk for aquatic ecosystems. Soil pollution with metal nanocomposites has negative effects resulting in death of its inhabitants and decrease in their reproduction. These changes have a dose-dependent effects. Moreover, the severity of negative effects depends on the type of nanocomposite and the composition of the soil fauna. Copper and silver nanocomposites have the most pronounced toxicity for earthworms. Phytotoxicity of metal nanocomposites directly depends on the type of nanoparticles and concentration of accumulated matter in plant tissues. The ability of plants to accumulate metal nanoparticles in tissues is quite promising which can be used as utilization instrument of nanoparticles from environment. Nowadays, there is growing knowledge about ecological hazards and potential risk of exposure to nanomaterials entering into objects of the environment. While the next step will be protection of plants, animals, and primarily, the human being from the negative effects and addressing the issue of environmentally safe usage of nanometals.


Nanocomposite Ecosystem Ecotoxicity Aquatic biocenosis Soil biocenosis 



Silver nitrate


Aluminum oxide


Adenosine Tri-Phosphate


B-cell lymphoma 2




Copper oxide


Copper(II) sulfate


Deoxyribonucleic acid


Iron(III) oxide




Heat shock protein


Hydrogen peroxide


Highthroughput screening


Nano-copper oxide


Nano-zinc oxide


Organization for Economic Co-operation and Development


Steroidogenic acute regulatory protein


Titanium dioxideTitanium dioxide


Zinc oxide


Zinc sulfate


  1. Abdelhalim MA, Jarrar BM (2012) Histological alterations in the liver of rats induced by different gold nanoparticle sizes, doses and exposure duration. J Nanobiotechnol 10:5CrossRefGoogle Scholar
  2. Alt V, Bechert T, Steinrücke P, Wagener M, Seidel P, Dingeldein E et al (2004) An in vitro assessment of the antibacterial properties and cytotoxicity of nanoparticulate silver bone cement. Biomaterials 25(18):4383–4391PubMedCrossRefGoogle Scholar
  3. Altenburger R, Walter H, Grote M (2004) What contributes to the combined effect of a complex mixture? Environ Sci Technol 38(23):6353–6362PubMedCrossRefGoogle Scholar
  4. Amooaghaie R, Saeri MR, Azizi M (2015) Synthesis, characterization and biocompatibility of silver nanoparticles synthesized from Nigella sativa leaf extract in comparison with chemical silver nanoparticles. Ecotoxicol Environ Saf 120:400–408PubMedCrossRefGoogle Scholar
  5. Andrusishina IN, Golub IA, Didikin GG, Litvin SE, Gromovoy TY, Gorchev VF, Movchan VA (2011) Structure, properties and toxicity of nanoparticles of silver and copper oxides. Biotechnology (Russian) 4(6):51–59Google Scholar
  6. Aravantinou AF, Tsarpali V, Dailianis S, Manariotis ID (2015) Effect of cultivation media on the toxicity of ZnO nanoparticles to freshwater and marine microalgae. Ecotoxicol Environ Saf 114:109–116PubMedPubMedCentralCrossRefGoogle Scholar
  7. Ayatallahzadeh Shirazi M, Shariati F, Keshavarz AK, Ramezanpour Z (2015) Toxic effect of aluminium oxide nanoparticles on green micro-algae Dunaliella salina. Int J Environ Res 9(2):585–594Google Scholar
  8. Barabanov PV, Gerasimov AV, Blinov AV, Kravtsov AA, Kravtsov VA (2018) Influence of nanosilver on the efficiency of Pisum sativum crops germination. Ecotoxicol Environ Saf 147:715–719PubMedCrossRefGoogle Scholar
  9. Barrera-Díaz CE, Lugo-Lugo V, Bilyeu B (2012) A review of chemical, electrochemical and biological methods for aqueous Cr(VI) reduction. J Hazard Mater 223–224:1–12PubMedCrossRefGoogle Scholar
  10. Bermudez E, Mangum JB, Asgharian B, Wong BA, Reverdy EE, Janszen DB et al (2002) Long-term pulmonary responses of three laboratory rodent species to subchronic inhalation of pigmentary titanium dioxide particles. Toxicol Sci 70(1):86–97PubMedCrossRefGoogle Scholar
  11. Binh CT, Tong T, Gaillard JF, Gray KA, Kelly JJ (2014a) Common freshwater bacteria vary in their responses to short-term exposure to nano-TiO2. Environ Toxicol Chem 33(2):317–327PubMedCrossRefGoogle Scholar
  12. Binh CT, Tong T, Gaillard JF, Gray KA, Kelly JJ (2014b) Acute effects of TiO2 nanomaterials on the viability and taxonomic composition of aquatic bacterial communities assessed via high-throughput screening and next generation sequencing. PLoS ONE 9(8):e106280PubMedPubMedCentralCrossRefGoogle Scholar
  13. Bondarenko O, Juganson K, Ivask A, Kasemets K, Mortimer M, Kahru A (2013) Toxicity of Ag, CuO and ZnO nanoparticles to selected environmentally relevant test organisms and mammalian cells in vitro: a critical review. Arch Toxicol 87(7):1181–1200PubMedPubMedCentralCrossRefGoogle Scholar
  14. Brami C, Glover AR, Butt KR, Lowe CN (2017) Effects of silver nanoparticles on survival, biomass change and avoidance behaviour of the endogeic earthworm Allolobophora chlorotica. Ecotoxicol Environ Saf 141:64–69PubMedCrossRefGoogle Scholar
  15. Braydich-Stolle L, Hussain S, Schlager JJ, Hofmann MC (2005) In vitro cytotoxicity of nanoparticles in mammalian germline stem cells. Toxicol Sci 88(2):412–419PubMedPubMedCentralCrossRefGoogle Scholar
  16. Burakov A, Romantsova I, Kucherova A, Tkachev A (2014) Removal of heavy-metal ions from aqueous solutions using activated carbons: effect of adsorbent surface modification with carbon nanotubes. Adsorpt Sci Technol 32(9):737–747CrossRefGoogle Scholar
  17. Burakov AE, Galunin EV, Burakova IV, Kucherova AE, Agarwal S, Tkachev AG, Gupta VK (2018) Adsorption of heavy metals on conventional and nanostructured materials for wastewater treatment purposes: a review. Ecotoxicol Environ Saf 148:702–712PubMedCrossRefGoogle Scholar
  18. Callegaro S, Minetto D, Pojana G, Bilanicová D, Libralato G, Volpi Ghirardini A et al (2015) Effects of alginate on stability and ecotoxicity of nano-TiO2 in artificial seawater. Ecotoxicol Environ Saf 117:107–114PubMedCrossRefGoogle Scholar
  19. Cao H, Meng F, Liu X (2016) Antimicrobial activity of tantalum oxide coatings decorated with Ag nanoparticles. J Vac Sci Technol A 34(4):102CrossRefGoogle Scholar
  20. Clément L, Hurel C, Marmier N (2013) Toxicity of TiO(2) nanoparticles to cladocerans, algae, rotifers and plants—effects of size and crystalline structure. Chemosphere 90(3):1083–1090PubMedCrossRefGoogle Scholar
  21. Cullen LG, Tilston EL, Mitchell GR, Collins CD, Shaw LJ (2011) Assessing the impact of nano- and micro-scale zerovalent iron particles on soil microbial activities: particle reactivity interferes with assay conditions and interpretation of genuine microbial effects. Chemosphere 82(11):1675–1682PubMedCrossRefGoogle Scholar
  22. Cupi D, Hartmann NB, Baun A (2016) Influence of pH and media composition on suspension stability of silver, zinc oxide, and titanium dioxide nanoparticles and immobilization of Daphnia magna under guideline testing conditions. Ecotoxicol Environ Saf 127:144–152PubMedCrossRefGoogle Scholar
  23. Cvjetko P, Milošić A, Domijan AM, VinkovićVrček I, Tolić S, Peharec Štefanić P et al (2017) Toxicity of silver ions and differently coated silver nanoparticles in Allium cepa roots. Ecotoxicol Environ Saf 137:18–28PubMedCrossRefGoogle Scholar
  24. Damoiseaux R, George S, Li M, Pokhrel S, Ji Z, France B et al (2011) No time to lose–high throughput screening to assess nanomaterial safety. Nanoscale 3(4):1345–1360PubMedPubMedCentralCrossRefGoogle Scholar
  25. Darwish AD (2012) Fullerenes. Annu Rep Prog Chem Sect A Inorg Chem 108:464–477CrossRefGoogle Scholar
  26. Elder AC, Gelein R, Finkelstein JN, Cox C, Oberdörster G (2000) Pulmonary inflammatory response to inhaled ultrafine particles is modified by age, ozone exposure, and bacterial toxin. Inhal Toxicol 12(4):227–246PubMedCrossRefGoogle Scholar
  27. El-Temsah YS, Joner EJ (2012) Ecotoxicological effects on earthworms of fresh and aged nano-sized zero-valent iron (nZVI) in soil. Chemosphere 89(1):76–82PubMedCrossRefGoogle Scholar
  28. Fadeeva TV, Shurygina IA, Sukhov BG, Rai MK, Shurygin MG, Umanets VA et al (2015) Relationship between the structures and antimicrobial activities of argentic nanocomposites. Bull Russ Acad Sci Phys 79(2):273–275CrossRefGoogle Scholar
  29. Foltête AS, Masfaraud JF, Bigorgne E, Nahmani J, Chaurand P, Botta C et al (2011) Environmental impact of sunscreen nanomaterials: ecotoxicity and genotoxicity of altered TiO2 nanocomposites on Viciafaba. Environ Pollut 159(10):2515–2522PubMedCrossRefGoogle Scholar
  30. Galla JH (2000) Metabolic alkalosis. J Am Soc Nephrol 11(2):369–375PubMedGoogle Scholar
  31. Ganenko TV, Tantsyrev AP, Fadeeva TV, Shurygina IA, Shurygin MG, Sukhov BG, Trofimov BA (2017) Antimicrobial activity of silver nanocomposites of arabinogalactan and its sulfo derivatives. J Infectol (Russian) 9(1):51–52Google Scholar
  32. Gao M, Zhang Z, Lv M, Song W, Lv Y (2018) Toxic effects of nanomaterial-adsorbed cadmium on Daphnia magna. Ecotoxicol Environ Saf 148:261–268PubMedCrossRefGoogle Scholar
  33. Gao X, Topping VD, Keltner Z, Sprando RL, Yourick JJ (2017) Toxicity of nano- and ionic silver to embryonic stem cells: a comparative toxicogenomic study. J Nanobiotechnol 15(1):31CrossRefGoogle Scholar
  34. Gatti AM (2005) Risk assessment of micro and nanoparticles and the human health. In: Handbook of nanostructured biomaterials and their applications. American Scientific Publisher, USA, pp 347–369Google Scholar
  35. Gautam A, Ray A, Mukherjee S, Das S, Pal K, Das S et al (2018) Immunotoxicity of copper nanoparticle and copper sulfate in a common Indian earthworm. Ecotoxicol Environ Saf 148:620–631PubMedCrossRefGoogle Scholar
  36. George S, Xia T, Rallo R, Zhao Y, Ji Z, Lin S et al (2011) Use of a high-throughput screening approach coupled with in vivo zebrafish embryo screening to develop hazard ranking for engineered nanomaterials. ACS Nano 5(3):1805–1817PubMedPubMedCentralCrossRefGoogle Scholar
  37. Gomes A, Fernandes E, Lima JL (2005) Fluorescence probes used for detection of reactive oxygen species. J Biochem Biophys Methods 65(2–3):45–80PubMedCrossRefGoogle Scholar
  38. Gomes HI, Dias-Ferreira C, Ribeiro AB (2013) Overview of in situ and ex situ remediation technologies for PCB-contaminated soils and sediments and obstacles for full-scale application. Sci Total Environ 445–446:237–260PubMedCrossRefGoogle Scholar
  39. Gomes SI, Murphy M, Nielsen MT, Kristiansen SM, Amorim MJ, Scott-Fordsmand JJ (2015) Cu-nanoparticles ecotoxicity–explored and explained? Chemosphere 139:240–245PubMedCrossRefGoogle Scholar
  40. González-Sánchez MI, González-Macia L, Pérez-Prior MT, Valero E, Hancock J, Killard AJ (2013) Electrochemical detection of extracellular hydrogen peroxide in Arabidopsis thaliana: a real-time marker of oxidative stress. Plant, Cell Environ 36(4):869–878CrossRefGoogle Scholar
  41. Harshiny M, Matheswaran M, Arthanareeswaran G, Kumaran S, Rajasree S (2015) Enhancement of antibacterial properties of silver nanoparticles—ceftriaxone conjugate through Mukia maderaspatana leaf extract mediated synthesis. Ecotoxicol Environ Saf 121:135–141PubMedCrossRefGoogle Scholar
  42. Holden PA, Nisbet RM, Lenihan HS, Miller RJ, Cherr GN, Schimel JP, Gardea-Torresdey JL (2013) Ecological nanotoxicology: integrating nanomaterial hazard considerations across the subcellular, population, community, and ecosystems levels. Acc Chem Res 46(3):813–822PubMedCrossRefGoogle Scholar
  43. Ivask A, Bondarenko O, Jepihhina N, Kahru A (2010) Profiling of the reactive oxygen species-related ecotoxicity of CuO, ZnO, TiO2, silver and fullerene nanoparticles using a set of recombinant luminescent Escherichia coli strains: differentiating the impact of particles and solubilised metals. Anal Bioanal Chem 398(2):701–716PubMedCrossRefGoogle Scholar
  44. Jang MH, Lim M, Hwang YS (2014) Potential environmental implications of nanoscale zero-valent iron particles for environmental remediation. Environ Health Toxicol 29:e2014022PubMedPubMedCentralCrossRefGoogle Scholar
  45. Jin X, Li M, Wang J, Marambio-Jones C, Peng F, Huang X et al (2010) High-throughput screening of silver nanoparticle stability and bacterial inactivation in aquatic media: influence of specific ions. Environ Sci Technol 44(19):7321–7328PubMedCrossRefGoogle Scholar
  46. Jukapli NM, Bagheri S (2016) Recent developments on titania nanoparticle as photocatalytic cancer cells treatment. J Photochem Photobiol B 163:421–430PubMedCrossRefGoogle Scholar
  47. Kahru A, Savolainen K (2010) Potential hazard of nanoparticles: from properties to biological and environmental effects. Toxicology 269(2–3):89–91PubMedCrossRefGoogle Scholar
  48. Kennedy AJ, Coleman JG, Diamond SA, Melby NL, Bednar AJ, Harmon A et al (2017) Assessing nanomaterial exposures in aquatic ecotoxicological testing: framework and case studies based on dispersion and dissolution. Nanotoxicology 11(4):546–557PubMedCrossRefGoogle Scholar
  49. Kokila T, Ramesh PS, Geetha D (2016) Biosynthesis of AgNPs using Carica Papaya peel extract and evaluation of its antioxidant and antimicrobial activities. Ecotoxicol Environ Saf 134(Pt 2):467–473PubMedCrossRefGoogle Scholar
  50. Kon K, Rai M (eds) (2016) Antibiotic resistance: Mechanisms and new antimicrobial approaches. Academic Press, AmsterdamGoogle Scholar
  51. Kumar A, Pandey AK, Singh SS, Shanker R, Dhawan A (2011) Engineered ZnO and TiO(2) nanoparticles induce oxidative stress and DNA damage leading to reduced viability of Escherichia coli. Free Radic Biol Med 51(10):1872–1881PubMedCrossRefGoogle Scholar
  52. Lesnichaya MV, Alexandrova GP, Fadeeva TV, Shurygina IA, Shurygin MG, Sukhov BG and Trofimov BA (2017) Preparation of new antimicrobial agents based on silver nanocomposites in matrices of natural polysaccharides. J Infectol (Russian) 9(11):92Google Scholar
  53. Manesh RR, Grassi G, Bergami E, Marques-Santos LF, Faleri C, Liberatori G, Corsi I (2018) Co-exposure to titanium dioxide nanoparticles does not affect cadmium toxicity in radish seeds (Raphanus sativus). Ecotoxicol Environ Saf 148:359–366PubMedCrossRefGoogle Scholar
  54. Maness PC, Smolinski S, Blake DM, Huang Z, Wolfrum EJ, Jacoby WA (1999) Bactericidal activity of photocatalytic TiO(2) reaction: toward an understanding of its killing mechanism. Appl Environ Microbiol 65(9):4094–4098PubMedPubMedCentralGoogle Scholar
  55. Manier N, Bado-Nilles A, Delalain P, Aguerre-Chariol O, Pandard P (2013) Ecotoxicity of non-aged and aged CeO2 nanomaterials towards freshwater microalgae. Environ Pollut 180:63–70PubMedCrossRefGoogle Scholar
  56. Manquián-Cerda K, Cruces E, Angélica Rubio M, Reyes C, Arancibia-Miranda N (2017) Preparation of nanoscale iron (oxide, oxyhydroxides and zero-valent) particles derived from blueberries: reactivity, characterization and removal mechanism of arsenate. Ecotoxicol Environ Saf 145:69–77PubMedCrossRefGoogle Scholar
  57. Melezhyk AV, Kotov VA, Tkachev AG (2016) Optical properties and aggregation of graphene nanoplatelets. J Nanosci Nanotechnol 16(1):1067–1075PubMedCrossRefGoogle Scholar
  58. Meng H, Chen Z, Xing G, Yuan H, Chen C, Zhao F et al (2007) Ultrahigh reactivity provokes nanotoxicity: explanation of oral toxicity of nano-copper particles. Toxicol Lett 175(1–3):102–110PubMedCrossRefGoogle Scholar
  59. Metzler DM, Erdem A, Tseng YH and Huang CP (2012) Responses of algal cells to engineered nanoparticles measured as algal cell population, chlorophyll a, and lipid peroxidation: effect of particle size and type. J Nanotechnol 2012. Article ID 237284Google Scholar
  60. Mi FL, Wu YB, Shyu SS, Schoung JY, Huang YB, Tsai YH et al (2002) Control of wound infections using a bilayer chitosan wound dressing with sustainable antibiotic delivery. J Biomed Mater Res 59:438–449PubMedCrossRefGoogle Scholar
  61. Mitrano DM, Motellier S, Clavaguera S, Nowack B (2015) Review of nanomaterial aging and transformations through the life cycle of nano-enhanced products. Environ Int 77:132–147PubMedCrossRefGoogle Scholar
  62. Morelli E, Gabellieri E, Bonomini A, Tognotti D, Grassi G, Corsi I (2018) TiO2 nanoparticles in seawater: aggregation and interactions with the green alga Dunaliella tertiolecta. Ecotoxicol Environ Saf 148:184–193PubMedCrossRefGoogle Scholar
  63. Mosselhy DA, El-Aziz MA, Hanna M, Ahmed MA, Husien MM, Feng QL (2015) Comparative synthesis and antimicrobial action of silver nanoparticles and silver nitrate. J Nanopart Res 17:1–10CrossRefGoogle Scholar
  64. Navarro E, Baun A, Behra R, Hartmann NB, Filser J, Miao AJ et al (2008) Environmental behavior and ecotoxicity of engineered nanoparticles to algae, plants, and fungi. Ecotoxicology 17(5):372–386CrossRefGoogle Scholar
  65. Nel A, Xia T, Meng H, Wang X, Lin S, Ji Z, Zhang H (2013) Nanomaterial toxicity testing in the 21st century: use of a predictive toxicological approach and high-throughput screening. Acc Chem Res 46(3):607–621PubMedCrossRefGoogle Scholar
  66. NogueiraV Lopes I, Rocha-Santos TA, Rasteiro MG, Abrantes N, Gonçalves F et al (2015) Assessing the ecotoxicity of metal nano-oxides with potential for wastewater treatment. Environ Sci Pollut Res Int 22(17):13212–13224CrossRefGoogle Scholar
  67. NogueiraV Lopes I, Rocha-Santos T, Santos AL, Rasteiro GM, Antunes F et al (2012) Impact of organic and inorganic nanomaterials in the soil microbial community structure. Sci Total Environ 424:344–350CrossRefGoogle Scholar
  68. Novikov MA, Titov EA, Sosedova LM, OstroukhovaLA Trofimova NN, Babkin VA (2014) Biochemical and morphological changes in white rats after intragastric injection of a synthetic nanobiocomposite based on silver nanoparticles and arabinogalactan. Pharm Chem J 48(6):387–390CrossRefGoogle Scholar
  69. Oberdörster G, Oberdörster E, Oberdörster J (2005) Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect 113(7):823–839PubMedPubMedCentralCrossRefGoogle Scholar
  70. Omouri Z, Hawari J, Fournier M, Robidoux PY (2018) Bioavailability and chronic toxicity of bismuth citrate to earthworm Eisenia andrei exposed to natural sandy soil. Ecotoxicol Environ Saf 147:1–8PubMedCrossRefGoogle Scholar
  71. Pádrová K, Čejková A, Cajthaml T, Kolouchová I, Vítová M, Sigler K, Řezanka T (2016) Enhancing the lipid productivity of yeasts with trace concentrations of iron nanoparticles. Folia Microbiol (Praha) 61(4):329–335CrossRefGoogle Scholar
  72. Pakrashi S, Dalai S, Sabat D, Singh S, Chandrasekaran N, Mukherjee A (2011) Cytotoxicity of Al2O3 nanoparticles at low exposure levels to a freshwater bacterial isolate. Chem Res Toxicol 24(11):1899–1904PubMedCrossRefGoogle Scholar
  73. Polonini HC, Brandão HM, Raposo NR, Brandão MA, Mouton L, Couté A et al (2015) Size-dependent ecotoxicity of barium titanate particles: the case of Chlorella vulgaris green algae. Ecotoxicology 24(4):938–948PubMedCrossRefGoogle Scholar
  74. Pozdnyakov AS, Emel’yanov AI, Kuznetsova NP, Ermakova TG, Fadeeva TV, Sosedova LM, Prozorova GF (2016) Nontoxic hydrophilic polymeric nanocomposites containing silver nanoparticles with strong antimicrobial activity. Int J Nanomedicine 11:1295–1304PubMedPubMedCentralCrossRefGoogle Scholar
  75. Priya RS, Geetha D, Ramesh PS (2016) Antioxidant activity of chemically synthesized AgNPs and biosynthesized Pongamia pinnata leaf extract mediated AgNPs—A comparative study. Ecotoxicol Environ Saf 134(Pt 2):308–318PubMedCrossRefGoogle Scholar
  76. Puerari RC, da Costa CH, Vicentini DS, Fuzinatto CF, Melegari SP, Schmidt ÉC et al (2016) Synthesis, characterization and toxicological evaluation of Cr2O3 nanoparticles using Daphnia magna and Aliivibrio fischeri. Ecotoxicol Environ Saf 128:36–43PubMedCrossRefGoogle Scholar
  77. Rothman SS (2002) Lessons from the living cell: the culture of science and the limits of reductionism. McGraw-Hill, New YorkGoogle Scholar
  78. Rukavishnikov VS, Sosedova LM, Vokina VA, Titov EA, Novikov MA, Yakimova NL (2017) Assessment of neurotoxicity of nanometals encapsulated on arabinogalactan matrix. Occup Med Ind Ecol 10:25–29. RussianGoogle Scholar
  79. Sahoo SK, Parveen S, Panda JJ (2007) The present and future of nanotechnology in human health care. Nanomedicine 3(1):20–31PubMedCrossRefGoogle Scholar
  80. Salieri B, Righi S, Pasteris A, Olsen SI (2015) Freshwater ecotoxicity characterisation factor for metal oxide nanoparticles: a case study on titanium dioxide nanoparticle. Sci Total Environ 505:494–502PubMedCrossRefGoogle Scholar
  81. Sanchís J, Olmos M, Vincent P, Farré M, Barceló D (2016) New insights on the influence of organic co-contaminants on the aquatic toxicology of carbon nanomaterials. Environ Sci Technol 50(2):961–969PubMedCrossRefGoogle Scholar
  82. Santschi C, Von Moos N, Koman VB, Slaveykova VI, Bowen P, Martin OJ (2017) Non-invasive continuous monitoring of pro-oxidant effects of engineered nanoparticles on aquatic microorganisms. J Nanobiotechnol 15(1):19CrossRefGoogle Scholar
  83. Semerád J, Cajthaml T (2016) Ecotoxicity and environmental safety related to nano-scale zerovalent iron remediation applications. Appl Microbiol Biotechnol 100(23):9809–9819PubMedCrossRefGoogle Scholar
  84. Shahin NN, Mohamed MM (2017) Nano-sized titanium dioxide toxicity in rat prostate and testis: possible ameliorative effect of morin. Toxicol Appl Pharmacol 334:129–141PubMedCrossRefGoogle Scholar
  85. Shang E, Li Y, Niu J, Guo H, Zhou Y, Liu H, Zhang X (2015) Effect of aqueous media on the copper-ion-mediated phototoxicity of CuO nanoparticles toward green fluorescent protein-expressing Escherichia coli. Ecotoxicol Environ Saf 122:238–244PubMedCrossRefPubMedCentralGoogle Scholar
  86. Shurygina IA, Shurygin MG, Dmitrieva LA, Fadeeva TV, Ganenko TV, Tantsyrev AP et al (2015) Bacterio- and lymphocytotoxicity of silver nanocomposite with sulfated arabinogalactan. Russ Chem Bull 64(7):1629–1632CrossRefGoogle Scholar
  87. Shurygina IA, Sukhov BG, Fadeeva TV, Umanets VA, Shurygin MG, Ganenko TV et al (2011a) Bactericidal action of Ag(0)-antithrombotic sulfated arabinogalactan nanocomposite: coevolution of initial nanocomposite and living microbial cell to a novel nonliving nanocomposite. Nanomedicine 7(6):827–833PubMedCrossRefGoogle Scholar
  88. Shurygina IA, Sukhov BG, Fadeeva TV, Umanets VA, Shurygin MG, Verecshagina SA et al (2011b) Mechanism of bactericidal action Ag(0)-nanobiocomposite: the evolution of the original composite and live microbial cells in the new nanocomposite. Russ Phys J 54(2):285–288. RussianGoogle Scholar
  89. Song M, Wang F, Zeng L, Yin J, Wang H, Jiang G (2014) Co-exposure of carboxyl-functionalized single-walled carbon nanotubes and 17-aethinylestradiol in cultured cells: effects on bioactivity and cytotoxicity. Environ Sci Technol 48(23):13978–13984PubMedCrossRefGoogle Scholar
  90. Sosedova LM, Filippova TM (2017) The effects of nanosilver, encapsulated in a polymeric matrix, on albino rats brain tissue. Nano Hybrids and Compos 13:263–267CrossRefGoogle Scholar
  91. Sosedova LM, Kapustina EA, Novikov MA (2015) Activity of apoptosis in the nerve tissue of white rats exposed to nanosilver arabinogalactan. Toxicol Rev 6:27–31. RussianGoogle Scholar
  92. Sosedova LM, Novikov MA, Titov EA, Rukavishnikov VS (2016) [Induction of apoptosis in neurons of white rats under exposure of nanobiocomposite based on Ag(0) nanoparticles and arabinogalactan. Gig Sanit (Russian) 95(12):1210–1213Google Scholar
  93. Sosedova LM, Titov EA and Novikov MA (2014) Morphofunctional evaluation of the effects of silver nanoparticles encapsulated in a polymer matrix. Microelem Med (Russian) 15(4):39–43Google Scholar
  94. Tesh SJ, Scott TB (2014) Nano-composites for water remediation: a review. Adv Mater 26(35):6056–6068PubMedCrossRefGoogle Scholar
  95. Thomas CR, George S, Horst AM, Ji Z, Miller RJ, Peralta-Videa JR et al (2011) Nanomaterials in the environment: from materials to high-throughput screening to organisms. ACS Nano 5(1):13–20PubMedCrossRefGoogle Scholar
  96. Titov EA, Novikov MA (2014) Bcl-2 expression as criteria indicator of exposure to nanobiocomposites. Toxicol Rev (Russian) 4:34–38Google Scholar
  97. Titov EA, Novikov MA, Sosedova LM (2015a) Effect of silver nanoparticles encapsulated in a polymer matrix on the structure of nervous tissue and expression of caspase-3. Nanotechnol Russ 10(7–8):640–644CrossRefGoogle Scholar
  98. Titov EA, Sosedova LM and Novikov MA (2015b) Alteration of white rats brain tissue inducted by assessment of silver nanocomposite in capsulated in polymer matrix. Patol Fiziol Eksp Ter (Russian) 59(4):41–44Google Scholar
  99. Titov EA, Novikov MA, Sosedova LM (2016a) Expression of caspase-3 and bcl-2 proteins as an indicator of functional state of brain tissue in white rats exposed to argentum arabinogalactan. Occup Med Ind Ecol (Russian) 5:40–43Google Scholar
  100. Titov EA, Novikov MA, Sosedova LM (2016b) Method of evaluating toxic effects of silver nanoparticles encapsulated within polymer matrix of arabinogalactan on brain tissue of laboratory animals in long-term. RU patent 2578545Google Scholar
  101. Tomacheski D, Pittol M, Simões DN, Ribeiro VF, Santana RMC (2017) Effects of silver adsorbed on fumed silica, silver phosphate glass, bentonite organomodified with silver and titanium dioxide in aquatic indicator organisms. J Environ Sci (China) 56:230–239CrossRefGoogle Scholar
  102. Tong T, Binh CT, Kelly JJ, Gaillard JF, Gray KA (2013) Cytotoxicity of commercial nano-TiO2 to Escherichia coli assessed by high-throughput screening: effects of environmental factors. Water Res 47(7):2352–2362PubMedCrossRefGoogle Scholar
  103. Tong T, Wilke CM, Wu J, Binh CT, Kelly JJ, Gaillard JF, Gray KA (2015) Combined toxicity of nano-ZnO and nano-TiO2: from single- to multinanomaterial systems. Environ Sci Technol 49(13):8113–8123PubMedCrossRefGoogle Scholar
  104. Tripathi DK, Tripathi A, Shweta Singh S, Singh Y, Vishwakarma K et al (2017) Uptake, accumulation and toxicity of silver nanoparticle in autotrophic plants, and heterotrophic microbes: a concentric review. Front Microbiol 8:07PubMedPubMedCentralGoogle Scholar
  105. Vance ME, Kuiken T, Vejerano EP, McGinnis SP, Hochella MF, Rejeski D, Hull MS (2015) Nanotechnology in the real world: redeveloping the nanomaterial consumer products inventory. Beilstein J Nanotechnol 6:1769–1780PubMedPubMedCentralCrossRefGoogle Scholar
  106. von Moos N, Maillard L, Slaveykova VI (2015) Dynamics of sub-lethal effects of nano-CuO on the microalga Chlamydomonas reinhardtii during short-term exposure. Aquat Toxicol 161:267–275CrossRefGoogle Scholar
  107. Wang D, Zhao L, Ma H, Zhang H, Guo LH (2017) Quantitative analysis of reactive oxygen species photogenerated on metal oxide nanoparticles and their bacteria toxicity: the role of superoxide radicals. Environ Sci Technol 51(17):10137–10145PubMedCrossRefGoogle Scholar
  108. Wang J, Zhou G, Chen C, Yu H, Wang T, Ma Y et al (2007) Acute toxicity and biodistribution of different sized titanium dioxide particles in mice after oral administration. Toxicol Lett 168(2):176–185CrossRefGoogle Scholar
  109. Warheit DB, Webb TR, Reed KL (2003) Pulmonary toxicity studies with TiO2 particles containing various commercial coatings. Toxicologist 72(1):298–300Google Scholar
  110. Wiesner MR, Lowry GV, Alvarez P, Dionysiou D, Biswas P (2006) Assessing the risks of manufactured nanomaterials. Environ Sci Technol 40(14):4336–4345PubMedCrossRefGoogle Scholar
  111. Williams AJ (1998) ABC of oxygen: assessing and interpreting arterial blood gases and acid-base balance. BMJ 317(7167):1213–1216PubMedPubMedCentralCrossRefGoogle Scholar
  112. Yang H, Mei S, Zhao L, Zhang Y (2016) Effects of ultraviolet irradiation on the antibacterial activity of TiO2 nanotubes. Nanosci Nanotechnol Lett 8(6):498–504CrossRefGoogle Scholar
  113. Ye N, Wang Z, Fang H, Wang S, Zhang F (2017) Combined ecotoxicity of binary zinc oxide and copper oxide nanoparticles to Scenedesmus obliquus. J Environ Sci Health A Tox Hazard Subst Environ Eng 52(6):555–560PubMedCrossRefGoogle Scholar
  114. Ye X, Li H, Wang Q, Chai R, Ma C, Gao H, Mao J (2018) Influence of aspartic acid and lysine on the uptake of gold nanoparticles in rice. Ecotoxicol Environ Saf 148:418–425PubMedCrossRefGoogle Scholar
  115. Zhang W, Li Y, Niu J, Chen Y (2013) Photogeneration of reactive oxygen species on uncoated silver, gold, nickel, and silicon nanoparticles and their antibacterial effects. Langmuir 29(15):4647–4651PubMedCrossRefGoogle Scholar
  116. Zhou C, Vitiello V, Pellegrini D, Wu C, Morelli E, Buttino I (2016) Toxicological effects of CdSe/ZnS quantum dots on marine planktonic organisms. Ecotoxicol Environ Saf 123:26–31PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Irina A. Shurygina
    • 1
    Email author
  • Larisa M. Sosedova
    • 2
  • Mikhail A. Novikov
    • 2
  • Eugeniy A. Titov
    • 2
  • Michael G. Shurygin
    • 1
  1. 1.Irkutsk Scientific Center of Surgery and TraumatologyIrkutskRussia
  2. 2.East-Siberian Institution of Medical and Ecological ResearchAngarskRussia

Personalised recommendations