Ecotoxicity of Metal Nanoparticles on Microorganisms

  • Patrycja GolinskaEmail author
  • Magdalena Świecimska
  • Magdalena Wypij


Metal nanoparticles are commonly used in various products including appliances, electronics and computers, automotive, health and fitness, food and beverage, cross cutting, goods for children, home and garden, among which they are used most frequently in personal care, clothing and cosmetic sunscreen. Developments in nanotechnology are leading to a rapid increase of new nanomaterials that are likely to become a source of such materials to the environment, where their possible ecotoxicological impacts remain unknown. The surface properties of metal nanoparticles are of essential importance for their behavior and toxicity in the environment. Physico-chemical properties of metal nanoparticles affect their mobility in aquatic and terrestrial systems and their interactions with microorganisms. Metal nanoparticles present in the environment may impact on microbial activity, biomass and diversity. Thus, for risk assessment of metal nanoparticles on health and environment comprehensive study of metal NP properties as well as their quantities and concentrations in environmental systems are required.


Metal nanoparticles Ecotoxicity Microorganisms 



The grant Nos. 2016/23/N/NZ9/00247 and 2017/01/X/NZ8/00140 from National Science Centre (NCN) in Poland are acknowledged.


  1. Abbaszadegan A, Ghahramani Y, Gholami A, Hemmateenejad B, Dorostkar S, Nabavizadeh M, Sharghi H (2015) The effect of charge at the surface of silver nanoparticles on antimicrobial activity against Gram-positive and Gram-negative bacteria: a preliminary study. J Nanomater 2015:720654CrossRefGoogle Scholar
  2. Antisari LV, Carbone S, Gatti A, Vianello G, Nannipieri P (2013) Toxicity of metal oxide (CeO2, Fe3O4, SnO2) engineered nanoparticles on soil microbial biomass and their distribution in soil. Soil Biol Biochem 60:87–94CrossRefGoogle Scholar
  3. Auffan M, Rose J, Wiesner MR, Bottero JY (2009) Chemical stability of metallic nanoparticles a parameter controlling their potential cellular toxicity in vitro. Environ Pollut 157:1127–1133PubMedCrossRefGoogle Scholar
  4. Ben-Moshe T, Dror I, Berkowitz B (2010) Transport of metal oxide nanoparticles in saturated porous media. Chemosphere 81:387–393PubMedCrossRefGoogle Scholar
  5. Ben-Moshe T, Frenk S, Dror I, Minz D, Berkowitz B (2013) Effects of metal oxide nanoparticles on soil properties. Chemosphere 90:640–646PubMedCrossRefGoogle Scholar
  6. Berendsen RL, Pieterse CMJ, Bakker PAHM (2012) The rhizosphere microbiome and plant health. Trends Plant Sci 17:478–486PubMedCrossRefGoogle Scholar
  7. Boxall A, Chaudhry Q, Sinclair C, Jones A, Aitken R, Jefferson B, Watts C (2007) Current and future predicted environmental exposure to engineered nanoparticles. Central Science Laboratory, York, UKGoogle Scholar
  8. Brant JA, Labille J, Bottero JY, Wiesner MR (2007) Nanoparticle transport, aggregation and deposition. In: Wiesner MR, Bottero JY (eds) Environmental nanotechnology applications and impacts of nanomaterials. McGraw Hill, New York, USA, pp 231–294Google Scholar
  9. Brookes PC, Landman A, Pruden G, Jenkison DS (1985) Chloroform fumigation and the release of soil nitrogen: a rapid direct extraction method for measuring microbial biomass nitrogen in soil. Soil Biol Biochem 17:837–842CrossRefGoogle Scholar
  10. Burke DJ, Zhu S, Pablico-Lansigan MP, Hewins CR, Samia ACS (2014) Titanium oxide nanoparticle effect on the composition of soil microbial communities and plant performance. Biol Fertil Soils 50:1169–1173CrossRefGoogle Scholar
  11. Chauhan R, Kumar A, Abraham J (2013) Biological approach to the synthesis of silver nanoparticles with Streptomyces sp JAR1 and its antimicrobial activity. Sci Pharm 81:607–621PubMedPubMedCentralCrossRefGoogle Scholar
  12. Chen BD, Li XL, Tao HQ, Christie P, Wong MH (2003) The role of arbuscular mycorrhiza in zinc uptake by red clover growing in a calcareous soil spiked with various quantities of zinc. Chemosphere 50:839–846PubMedCrossRefGoogle Scholar
  13. Chen HT, Neerman MF, Parrish AR, Simanek EE (2004) Cytotoxicity, hemolysis, and acute in vivo toxicity of dendrimers based on melamine, candidate vehicles for drug delivery. J Am Chem Soc 126:10044–10048PubMedCrossRefGoogle Scholar
  14. Chen W, Duan L, Zhu D (2007) Adsorption of polar and nonpolar organic chemicals to carbon nanotubes. Environ Sci Technol 41:8295–8300PubMedCrossRefGoogle Scholar
  15. Collins D, Luxton T, Kumar N, Shah S, Walker VK, Shah V (2012) Assessing the impact of copper and zinc oxide nanoparticles on soil: a field study. PLoS ONE 7:e42663PubMedPubMedCentralCrossRefGoogle Scholar
  16. Colman BP, Arnaout CL, Anciaux S, Gunsch CK, Hochella MF Jr, Kim B, Lowry GV, McGill BM, Reinsch BC, Richardson CJ, Unrine JM, Wright JP, Yin L, Bernhardt ES (2013) Low concentrations of silver nanoparticles in sewage sludge cause adverse ecosystem responses under realistic field scenario. PLoS ONE 8:e57189PubMedPubMedCentralCrossRefGoogle Scholar
  17. Cornelis G, Hund-Rinke K, Kuhlbusch T, Van den Brink N, Nickel C (2014) Fate and bioavailability of engineered nanoparticles in soils: a review. Crit Rev Environ Sci Technol 44:2720–2764CrossRefGoogle Scholar
  18. Cornelis G, Pang L, Doolette C, Kirby JK, McLaughlin MJ (2013) Transport of silver nanoparticles in saturated columns of natural soils. Sci Total Environ 463:120–130PubMedCrossRefGoogle Scholar
  19. Dimkpa CO, Latta DE, McLean JE, Britt DW, Boyanov MI, Anderson AJ (2013) Fate of CuO and ZnO nano- and microparticles in the plant environment. Environ Sci Technol 47:4734–4742PubMedCrossRefGoogle Scholar
  20. Du W, Sun Y, Ji R, Zhu J, Wu J, Guo H (2011) TiO2 and ZnO nanoparticles negatively affect wheat growth and soil enzyme activities in agricultural soil. J Environ Monitor 13:822–828CrossRefGoogle Scholar
  21. Fajardo C, Ortíz LT, Rodríguez-Membibre ML, Nande M, Lobo MC, Martin M (2012) Assessing the impact of zero-valent iron (ZVI) nanotechnology on soil microbial structure and functionality: a molecular approach. Chemosphere 86:802–808PubMedCrossRefGoogle Scholar
  22. Fang J, Shan XQ, Wen B, Lin JM, Owens G (2009) Stability of titania nanoparticles in soil suspensions and transport in saturated homogeneous soil columns. Environ Pollut 157:1101–1109PubMedCrossRefGoogle Scholar
  23. Feng Y, Cui X, He S, Dong G, Chen M, Wang J, Lin X (2013) The role of metal nanoparticles in influencing arbuscular mycorrhizal fungi effects on plant growth. Environ Sci Technol 47:9496–9504PubMedCrossRefGoogle Scholar
  24. Fukushi K, Sato T (2005) Using a surface complexation model to predict the nature and stability of nanoparticles. Environ Sci Technol 39:1250–1256CrossRefGoogle Scholar
  25. Gajjar P, Pettee B, Britt D, Huang W, Johnson W, Anderson A (2009) Antimicrobial activities of commercial nanoparticles against an environmental soil microbe, Pseudomonas putida KT2440. J BiolEng 3:9–21Google Scholar
  26. Gaur A, Adholeya A (2004) Prospects of arbuscular mycorrhizal fungi in phytoremediation of heavy metal contaminated soils. Curr Sci 86:528–534Google Scholar
  27. Ge Y, Schimel JP, Holden PA (2012) Identification of soil bacteria susceptible to TiO2 and ZnO nanoparticles. Appl Environ Microb 78:6749–6758CrossRefGoogle Scholar
  28. Ge YG, Schimel JP, Holden PA (2011) Evidence for negative effects of TiO2 and ZnO nanoparticles on soil bacterial communities. Environ Sci Technol 45:1659–1664PubMedCrossRefGoogle Scholar
  29. Ghosh S, Patil S, Ahire M, Kitture R, Kale S, Pardesi K, Cameotra SS, Bellare J, Dhavale DD, Jabgunde A, Chopade BA (2012) Synthesis of silver nanoparticles using Dioscorea bulbifera tuber extract and evaluation of its synergistic potential in combination with antimicrobial agents. Int J Nanomed 7:483–496Google Scholar
  30. Giammar DE, Maus CJ, Xie LY (2007) Effects of particle size and crystalline phase on lead adsorption to titanium dioxide nanoparticles. Environ Eng Sci 24:85–95CrossRefGoogle Scholar
  31. Gimbert LJ, Hamon RE, Casey PS, Worsfold PJ (2007) Partitioning and stability of engineered ZnO nanoparticles in soil suspensions using flow field-flow fractionation. Environ Chem 4:8–10CrossRefGoogle Scholar
  32. Gonzalez-Chavez MC, Carrillo-Gonzalez R, Wright SF, Nichols KA (2004) The role of glomalin, a protein produced by arbuscular mycorrhizal fungi, in sequestering potentially toxic elements. Environ Pollut 130:317–323PubMedCrossRefGoogle Scholar
  33. Gottschalk F, Sonderer T, Scholz RW, Nowack B (2009) Modeled environmental concentrations of engineered nanomaterials (TiO2, ZnO, Ag, CNT, Fullerenes) for different regions. Environ Sci Technol 43:9216–9222PubMedCrossRefPubMedCentralGoogle Scholar
  34. Guzman KA, Finnegan MP, Banfield JF (2006a) Influence of surface potential on aggregation and transport of titania nanoparticles. Environ Sci Technol 40:7688–7693Google Scholar
  35. Guzman KA, Taylor MR, Banfield JF (2006b) Environmental risks of nanotechnology: national nanotechnology initiative funding, 2000–2004. Environ Sci Technol 40:1401–1407Google Scholar
  36. Handy RD, Owen R, Valsami-Jones E (2008) The ecotoxicology of nanoparticles and nanomaterials: current status, knowledge gaps, challenges, and future needs. Ecotoxicology 17:315–325PubMedCrossRefPubMedCentralGoogle Scholar
  37. Hänsch M, Emmerling C (2010) Effects of silver nanoparticles on the microbiota and enzyme activity in soil. J Plant Nutr Soil Sci 173:554–558CrossRefGoogle Scholar
  38. Harrison P (ed) (2007) Emerging challenges: nanotechnology and the environment. GEO Year Book 2007. United Nations Environment Programme (UNEP), Nairobi, Kenya, pp 61–68Google Scholar
  39. He L, Liu Y, Mustapha A, Lin M (2011) Antifungal activity of zinc oxide nanoparticles against Botrytis cinerea and Penicillium expansum. Microbiol Res 166:207–215PubMedCrossRefPubMedCentralGoogle Scholar
  40. Hristovski K, Baumgardner A, Westerhoff P (2007) Selecting metal oxide nanomaterials for arsenic removal in fixed bed columns: from nanopowders to aggregated nanoparticle media. J Hazard Mater 147:265–274PubMedCrossRefPubMedCentralGoogle Scholar
  41. Hristozov D, Malsch I (2009) Hazards and risks of engineered nanoparticles for the environment and human health. Sustainability 1:1161–1194CrossRefGoogle Scholar
  42. Joner EJ, Hartnik T, Amundsen CE (2007) Environmental fate and ecotoxicity of engineered nanoparticles. Norwegian Pollution Control Authority Report no. TA 2304/2007, Bioforsk, As, Norway, pp 1–64Google Scholar
  43. Ju-Nam Y, Lead R (2008) Manufactured nanoparticles: an overview of their chemistry, interactions and potential environmental implications. Sci Total Environ 400:396–414PubMedCrossRefPubMedCentralGoogle Scholar
  44. Jung J, Ahn YJ, Kang LW (2008) A novel approach to investigating protein/protein interactions and their functions by TAP-tagged yeast strains and its application to examine yeast transcription machinery. J Microbiol Biotechnol 18:631–638PubMedPubMedCentralGoogle Scholar
  45. Kahru A, Dubourguier HC (2010) From ecotoxicology to nanoecotoxicology. Toxicology 269:105–119PubMedCrossRefGoogle Scholar
  46. Kairyte K, Kadys A, Luksiene Z (2013) Antibacterial and antifungal activity of photo activated ZnO nanoparticles in suspension. J Photochem Photobiol 5:78–84CrossRefGoogle Scholar
  47. Keller AA, McFerran S, Lazareva A, Suh S (2013) Global life cycle releases of engineered nanomaterials. J Nanopart Res 15:1692CrossRefGoogle Scholar
  48. Khan I, Saeed K, Khan I (2017) Nanoparticles: properties, applications and toxicities. Arabian J Chem.
  49. Kim E, Kim S-H, Kim H-C, Lee SG, Lee SJ, Jeong SW (2011) Growth inhibition of aquatic plant caused by silver and titanium oxide nanoparticles. ToxEHS 3:1–6Google Scholar
  50. Kim JS, Kuk E, Yu KN, Kim JH, Park SJ, Lee HJ, Kim SH, Park YK, Park YH, Hwang CY, Kim YK, Lee YS, Jeong DH, Cho MH (2007) Antimicrobial effects of silver nanoparticles. Nanomed Nanotech Biol Med 3:95–101CrossRefGoogle Scholar
  51. Kumar N, Shah V, Walker VK (2011) Perturbation of an arctic soil microbial community by metal nanoparticles. J Hazard Mater 190:816–822PubMedCrossRefGoogle Scholar
  52. Kuzma J, VerHage P (2006) Nanotechnology in agriculture and food production—anticipated applications. Woodrow Wilson International Center for Scholars, Project on Emerging Nanotechnologies, Washington, DCGoogle Scholar
  53. Lecoanet HF, Bottero JY, Wiesner MR (2004) Laboratory assessment of the mobility of nanomaterials in porous media. Environ Sci Technol 38:5164–5169PubMedCrossRefPubMedCentralGoogle Scholar
  54. Li L, Schuster M (2014) Influence of phosphate and solution pH on the mobility of ZnO nanoparticles in saturated sand. Sci Total Environ 472:971–978PubMedCrossRefPubMedCentralGoogle Scholar
  55. Li M, Lin D, Zhu L (2013) Effects of water chemistry on the dissolution of ZnO nanoparticles and their toxicity to Escherichia coli. Environ Pollut 173:97–102PubMedCrossRefPubMedCentralGoogle Scholar
  56. Lok CN, Ho CM, Chen R, He QY, Yu WY, Sun HZ, Tam PKH, Chiu JF, Che CM (2006) Proteomic analysis of the mode of antibacterial action of silver nanoparticles. J Proteome Res 5:916–924PubMedCrossRefPubMedCentralGoogle Scholar
  57. Love SA, Maurer-Jones MA, Thompson JW, Lin Y-S, Haynes C-L (2012) Assessing nanoparticle toxicity. Annu Rev Analytical Chem 5:181–205CrossRefGoogle Scholar
  58. Luo M, Huang Y, Zhu M, Tang Y, Ren T, Ren J, Wang H, Li F (2018) Properties of different natural organic matter influence the adsorption and aggregation behavior of TiO2 nanoparticles. J Saudi Chem Soc 22:146–154CrossRefGoogle Scholar
  59. Luther GW, Rickard DT (2005) Metal sulfide cluster complexes and their biogeochemical importance in the environment. J Nanopart Res 7:389–407CrossRefGoogle Scholar
  60. Ma H, Williams PL, Diamond SA (2013) Ecotoxicity of manufactured ZnO nanoparticles—a review. Environ Pollut 172:76–85PubMedCrossRefGoogle Scholar
  61. Ma X, Geisler-Lee J, Deng Y, Kolmakov A (2010) Interactions between engineered nanoparticles (ENPs) and plants: phytotoxicity, uptake and accumulation. Sci Total Environ 408:3053–3061PubMedCrossRefGoogle Scholar
  62. Mafune F, Kohno J, Takeda Y, Kondow T, Sawabe H (2000) Structure and stability of silver nanoparticles in aqueous solution produced by laser ablation. J Phys Chem B 104:8333–8337CrossRefGoogle Scholar
  63. Mandal S, Gole A, Lala N, Gonnade R, Ganvir V, Sastry M (2001) Studies on the reversible aggregation of cysteine-capped colloidal silver particles interconnected via hydrogen bonds. Langmuir 17:6262–6268CrossRefGoogle Scholar
  64. Manivasagan P, Venkatesan J, Sivakumar K, Kim SK (2013) Production, characterization and antioxidant potential of protease from Streptomyces sp. MAB18 using poultry wastes. BioMed Res Int 2013:496–586Google Scholar
  65. Maynard AD, Aitken RJ, Butz T, Colvin V, Donaldson K, Oberdörster G, Philbert MA, Ryan J, Seaton A, Stone V, Tinkle SS, Tran L, Walker NJ, Warheit DB (2006) Safe handling of nanotechnology. Nature 444(7117):267–269PubMedCrossRefGoogle Scholar
  66. Milani N, McLaughlin MJ, Stacey SP, Kirby JK, Hettiarachchi GM, Beak DG, Cornelis G (2012) Dissolution kinetics of macronutrient fertilizers coated with manufactured zinc oxide nanoparticles. J Agri Food Chem 60:3991–3998CrossRefGoogle Scholar
  67. Miransari M (2011) Hyperaccumulators, arbuscular mycorrhizal fungi and stress of heavy metals. Biotechnol Adv 29:645–653PubMedCrossRefPubMedCentralGoogle Scholar
  68. Mohan YM, Lee K, Premkumar T, Geckeler KE (2007) Hydrogel networks as nanoreactors: a novel approach to silver nanoparticles for antibacterial applications. Polymer 48:158–164CrossRefGoogle Scholar
  69. Morones JR, Elechiguerra JL, Camacho A, Holt K, Kouri JB, Ramirez JT, Yacaman MJ (2005) The bactericidal effect of silver nanoparticles. Nanotechnology 16:2346–2353PubMedCrossRefGoogle Scholar
  70. Navarro E, Baun A, Behra R, Hartmann NB, Filser J, Miao A-J, Quigg A, Santschi PH, Sigg L (2008) Environmental behavior and ecotoxicity of engineered nanoparticles to algae, plants, and fungi. Ecotoxicology 17:372–386PubMedCrossRefGoogle Scholar
  71. NogueiraV Lopes I, Rocha-Santos T, Santos AL, Rasteiro GM, Antunes F, Gonçalves F, Soares AMVM, Cunha A, Almeida A, Gomes NNCM, Pereira R (2012) Impact of organic and inorganic nanomaterials in the soil microbial community structure. Sci Total Environ 424:344–350CrossRefGoogle Scholar
  72. Nowack B (2009) The behavior and effects of nanoparticles in the environment. Environ Pollut 157:1063–1064PubMedCrossRefGoogle Scholar
  73. Nowack B, Bucheli TD (2007) Occurrence, behavior and effects of nanoparticles in the environment. Environ Pollut 150:5–22PubMedCrossRefGoogle Scholar
  74. O’Brien NJ, Cummins EJ (2016) Environmental exposure modeling methods for engineered nanomaterials. In: Xing B, Vecitis CD, Sensi N (eds.) Engineered nanoparticles and the environment: biophysicochemical processes and toxicity. Wiley, Haboken, New Jersey, USA, pp 118–138CrossRefGoogle Scholar
  75. OECD (2010) Publications in the series on the safety of manufactured nanomaterials No. 27: List of manufactured nanomaterials and list of endpoints for phase one of the sponsorship programme for the testing of manufactured nanomaterials. OECD Publishing, Paris, France, p 13Google Scholar
  76. Ojamae L, Aulin C, Pedersen H, Kall PO (2006) IR and quantum chemical studies of carboxylic acid and glycine adsorption on rutile TiO2 nanoparticles. J Colloid Interface Sci 296:71–78PubMedCrossRefGoogle Scholar
  77. Pal S, Tak YK, Song JM (2007) Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli. Appl Environ Microbiol 73:1712–1720PubMedPubMedCentralCrossRefGoogle Scholar
  78. Panacek A, Kolar M, Vecerova R, Prucek R, Soukupova J, Krystof V, Hamal P, Zboril R, Kvitek L (2009) Antifungal activity of silver nanoparticles against Candida spp. Biomaterials 30:6333–6340PubMedCrossRefGoogle Scholar
  79. Panacek A, Kvitek L, Prucek R, Kolar M, Vecerova R, Pizurova N, Sharma VK, Nevecna T, Zboril R (2006) Silver colloid nanoparticles: synthesis, characterization, and their antibacterial activity. J Phys Chem B 110:16248–16253PubMedCrossRefGoogle Scholar
  80. Pawlett M, Ritz K, Dorey RA, Rocks S, Ramsden J, Harris JA (2013) The impact of zero-valent iron nanoparticles upon soil microbial communities is context dependent. Environ Sci Pollut Res 20:1041–1049CrossRefGoogle Scholar
  81. Petersen EJ, Huang Q, Weber WJ (2008) Bioaccumulation of radio-labeled carbon nanotubes by Eisenia foetida. Environ Sci Technol 42:3090–3095PubMedCrossRefGoogle Scholar
  82. Peyrot C, Wilkinson KJ, Desrosiers M, Sauvé S (2014) Effects of silver nanoparticles on soil enzyme activities with and without added organic matter. Environ Toxicol Chem 33:115–125PubMedCrossRefGoogle Scholar
  83. Pokhrel LR, Dubey B (2013) Evaluation of developmental responses of two crop plants exposed to silver and zinc oxide nanoparticles. Sci Total Environ 452–453:321–332PubMedCrossRefGoogle Scholar
  84. Pokhrel LR, Dubey B (2015) Early developmental responses of plants exposed to metals and oxides nanomaterials. In: Siddiqui MH, Al-Whaibi MH, Mohammad F (eds) Nanotechnology and plant sciences: nanoparticles and their impact on plants. Springer-Verlag, Berlin, Heidelberg, Germany, pp 153–164Google Scholar
  85. Priester JH, Ge Y, Mielke RE, Horst AM, Moritz SC, Espinosa K, Gelb J, Walker SL, Nisbet RM, An YJ, Schimel JP, Palmer RG, Hernandez-Viezcas JA, Zhao LJ, Gardea-Torresdey JL, Holden PA (2012) Soybean susceptibility to manufactured nanomaterials with evidence for food quality and soil fertility interruption. PNAS 109:2451–2456CrossRefGoogle Scholar
  86. Rai M, Ingle A (2012) Role of nanotechnology in agriculture with special reference to management of insect pests. Appl Microbiol Biotechnol 94:287–293PubMedCrossRefGoogle Scholar
  87. Rana S, Kalaichelva PT (2013) Ecotoxicity of nanoparticles. ISRN Toxicology.
  88. Ray PC, Yu H, Fu PP (2009) Toxicity and environmental risks of nanomaterials: challenges and future needs. J Environ Sci Health C Environ Carcinog Ecotoxicol Rev 27:1–35PubMedPubMedCentralCrossRefGoogle Scholar
  89. Renzi M, Guerranti C (2015) Ecotoxicity of nanoparticles in aquatic environments: a review based on multivariate statistics of meta-data. J Environ Anal Chem 2:149Google Scholar
  90. Ridley MK, Hackley VA, Machesky ML (2006) Characterization and surface-reactivity of nanocrystalline anatase in aqueous solutions. Langmuir 22:10972–10982PubMedCrossRefGoogle Scholar
  91. Roco MC (2005) Environmentally responsible development of nanotechnology. Environ Sci Technol 39:106A–112APubMedCrossRefGoogle Scholar
  92. Schimel JP, Schaeffer SM (2012) Microbial control over carbon cycling in soil. Front Microbiol.
  93. Schloter M, Nannipieri D, Sorensen S, van Elsas JD (2018) Microbial indicators for soil quality. Biol Fertil Soils 54:1–10CrossRefGoogle Scholar
  94. Sharma VK (2013) Silver nanoparticles in aquatic environment: a review. In: Shamim N, Sharma VK (eds) Sustainable nanotechnology and the environment: advances and achievements. ACS symposium series, vol 1124. American Chemical Society, Washington, DC, USA, pp 165–179Google Scholar
  95. Sharma VK, Yngard RA, Lin Y (2009) Silver nanoparticles: green synthesis and antimicrobial activities. Adv Colloid Interface Sci 145:83–96PubMedCrossRefGoogle Scholar
  96. Shen Z, Chen Z, Hou Z, Li T, Lu X (2015) Ecotoxicological effect of zinc oxide nanoparticles on soil microorganisms. Front Environ Sci Eng 9:912–918CrossRefGoogle Scholar
  97. Shin YJ, Kwak JI, An YJ (2012) Evidence for the inhibitory effects of silver nanoparticles on the activities of soil exoenzymes. Chemosphere 88:524–529PubMedCrossRefGoogle Scholar
  98. Shrivastava S, Bera T, Roy A, Singh G, Ramachandra Rao P, Dash D (2007) Characterization of enhanced antibacterial effects of novel silver nanoparticles. Nanotechnology 18:225103CrossRefGoogle Scholar
  99. Siani NG, Fallah S, Pokhrel LR, Rostamnejadi A (2017) Natural amelioration of zinc oxide nanoparticle toxicity in fenugreek (Trigonella foenum-gracum) by arbuscular mycorrhizal (Glomus intraradices) secretion of glomalin. Plant Physiol Biochem 112:227–238CrossRefGoogle Scholar
  100. Sillen W, Thijs S, Abbamondi GR, Janssen J, Weyens N, White JC, Vangronsveld J (2015) Effects of silver nanoparticles on soil microorganisms and maize biomass are linked in the rhizosphere. Soil Biol Biochem 91:14–22CrossRefGoogle Scholar
  101. Simonin M, Guyonnet JP, Martins JMF, Ginot M, Richaume A (2014) Influence of soil properties on the toxicity of TiO2 nanoparticles on carbon mineralization and bacterial abundance. J Hazard Mater. Scholar
  102. Simonin M, Richaume A (2015) Impact of engineered nanoparticles on the activity, abundance, and diversity of soil microbial communities: a review. Environ Sci Pollut Res 1–14Google Scholar
  103. Singh PK, Singh M, Tripathi BN (2013) Glomalin: an arbuscular mycorrhizal fungal soil protein. Protoplasma 250:663–669PubMedCrossRefGoogle Scholar
  104. Smith SE, Read DJ (2008) Mycorrhizal symbiosis. Academic Press, London, UKGoogle Scholar
  105. Stensberg MC, Wei Q, McLamore ES, Marshall D, Porterfield DM, Wei A, Sepúlveda MS (2011) Toxicological studies on silver nanoparticles: challenges and opportunities in assessment, monitoring and imaging. Nanomedicine 6:879–898PubMedCrossRefGoogle Scholar
  106. Sun TY, Gottschalk F, Hungerbühler K, Nowack B (2014) Comprehensive probabilistic modelling of environmental emissions of engineered nanomaterials. Environ Pollut 185:69–76PubMedCrossRefGoogle Scholar
  107. Thio BJR, Zhou D, Keller AA (2011) Influence of natural organic matter on the aggregation and deposition of titanium dioxide nanoparticles. J Hazard Mater 189:556–563PubMedCrossRefGoogle Scholar
  108. Tolaymat TM, El Badawy AM, Genaidy A, Scheckel KG, Luxton TP, Suidan M (2010) An evidence-based environmental perspective of manufactured silver nanoparticle in syntheses and applications: a systematic review and critical appraisal of peer-reviewed scientific papers. Sci Total Environ 408:999–1006PubMedCrossRefGoogle Scholar
  109. Torsvik V, Øvreås L (2002) Microbial diversity and function in soil: from genes to ecosystems. Curr Opin Microbiol 5:240–245PubMedCrossRefGoogle Scholar
  110. Voelker D, Schlich K, Hohndorf L, Koch W, Kuehnen U, Polleichtner C, Kussatz C, Hund-Rinke K (2015) Approach on environmental risk assessment of nanosilver released from textiles. Environ Res 140:661–672PubMedCrossRefGoogle Scholar
  111. Wang Q, Yang Z, Yang Y, Long C, Li H (2014) A bibliometric analysis of research on the risk of engineering nanomaterials during 1999–2012. Sci Total Environ 473–474:483–489PubMedCrossRefGoogle Scholar
  112. Wang ZY, Xie XY, Zhao J, Liu XY, Feng WQ, White JC, Xing BS (2012) Xylem- and phloem-based transport of CuO nanoparticles in maize (Zea mays L.). Environ Sci Technol 46:4434–4441PubMedCrossRefGoogle Scholar
  113. Wu B, Wang Y, Lee YH, Horst A, Wang Z, Chen DR, Sureshkumar R, Tang YJ (2010) Comparative eco-toxicities of nano-ZnO particles under aquatic and aerosol exposure modes. Environl Sci Technol 44:1484–1489CrossRefGoogle Scholar
  114. Xu ZY, Tang M, Chen H, Ban YH, Zhang HH (2012) Microbial community structure in the rhizosphere of Sophora viciifolia grown at a lead and zinc mine of northwest China. Sci Total Environ 453–464PubMedCrossRefGoogle Scholar
  115. Zarei M, Hempel S, Wubet T, Schafer T, Savaghebi G, Jouzani GS, Nekouei MK, Buscot F (2010) Molecular diversity of arbuscular mycorrhizal fungi in relation to soil chemical properties and heavy metal contamination. Environ Pollut 158:2757–2765PubMedCrossRefGoogle Scholar
  116. Zhang WX (2003) Nanoscale iron particles for environmental remediation: an overview. J Nanopart Res 5:323–332CrossRefGoogle Scholar
  117. Zhu YG, Christie P, Scott Laidlaw A (2001) Uptake of Zn by arbuscular mycorrhizal white clover from Zn-contaminated soil. Chemosphere 42:193–199PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Patrycja Golinska
    • 1
    Email author
  • Magdalena Świecimska
    • 1
  • Magdalena Wypij
    • 1
  1. 1.Department of MicrobiologyNicolaus Copernicus UniversityToruńPoland

Personalised recommendations