Chemical Structure and Toxicity of Nanomaterials Used in Food and Food Products

  • Semih OtlesEmail author
  • Buket Yalcin Sahyar


There are many areas for potential applications of nanomaterials in food industry, such as food processing, food packaging and nutrient supplementation. Food nanotechnology is still a growing area, which still needs clarification, definition and standardization from larger nanotechnology spectrum. Due to the lack of knowledge on nanomaterials and their usage inside complex matrix of food, health risk and toxicity of nanomaterials is becoming main parameters, which need to be defined, identified, and controlled for every single and novel application. Unfortunately, food matrix is complex and application of nanomaterials in the food matrix is also novel and unique for every specific application that is why every single specific application need to have its own investigation, classification, determination and toxicological studies. This chapter summarizes the application of nanomaterials in food industry and potential toxicological effect of nanomaterials especially regarding food industrial applications.


Food Nanomaterials Nanotechnology Structure and toxicology 


  1. Anyaogu KC, Fedorov AV, Neckers DC (2008) Synthesis, characterization, and antifouling potential of functionalized copper nanoparticles. Langmuir 24(8):4340–4346PubMedCrossRefGoogle Scholar
  2. Bajpai SK, Chand N, Chaurasia V (2010) Investigation of water vapor permeability and antimicrobial property of zinc oxide nanoparticles-loaded chitosan-based edible film. J Appl Polym Sci 115:674–683CrossRefGoogle Scholar
  3. Balbus JM, Maynard AD, Colvin VL, Castranova V, Daston GP, Denison RA, Dreher KL, Goering PL, Goldberg AM, Kulinowski KM et al (2007) Meeting report: hazard assessment for nanoparticles—report from an interdisciplinary workshop. Environ Health Perspect 115(11):1654–1659PubMedPubMedCentralCrossRefGoogle Scholar
  4. Bouwmeester H, Dekkers S, Noordam MY, Hagens WI, Bulder AS, de Heer C, ten Voorde SECG, Wijnhoven SWP, Marvin HJP, Sips AJAM (2009) Review of health safety aspects of nanotechnologies in food production. Regul Toxicol Pharmacol 53:52–62PubMedCrossRefGoogle Scholar
  5. Buzea C, Pacheco II, Robbie K (2007) Nanomaterials and nanoparticles: sources and toxicity. Biointerphases 2(4):17–71CrossRefGoogle Scholar
  6. Carbone M, Donia DT, Sabbatella G, Antiochia R (2016) Silver nanoparticles in polymeric matrices for fresh food packaging. J King Saud Univ Sci 28:273–279CrossRefGoogle Scholar
  7. Cárdenas G, Díaz J, Meléndrez M, Cruzat C, Cancino AG (2009) Colloidal Cu nanoparticles/chitosan composite film obtained by microwave heating for food package applications. Polym Bull 62:511CrossRefGoogle Scholar
  8. Chau C-F, Wu S-H, Yen G-C (2007) The development of regulations for food nanotechnology. Trends Food Sci Technol 18:269–280CrossRefGoogle Scholar
  9. Chaudhry Q, George C, Watkins R (2007) Nanotechnology regulation—developments in the United Kingdom. In: Hodge GA, Bowman DM, Ludlow K (eds) New global frontiers in regulation: the age of nanotechnology. Edward Elgar, Cheltenham, pp 212–238Google Scholar
  10. Chaudhry Q, Scotter M, Blackburn J, Ross B, Boxall A, Castle L, Aitken R, Watkins R (2008) Applications and implications of nanotechnologies for the food sector. Food Addit Contam 25(3):241–258CrossRefGoogle Scholar
  11. Chaurasia V, Chand N, Bajpai SK (2010) Water sorption properties and antimicrobial action of zinc oxide nanoparticles-loaded cellulose acetate films. J Macromol Sci Part A Pure Appl Chem 47:309–317CrossRefGoogle Scholar
  12. Cioffi N, Torsi L, Ditaranto N, Tantillo G, Ghibelli L, Sabbatini L, Bleve-Zacheo T, D’Alessio M, Zambonin PG, Traversa E (2005) Copper nanoparticle/polymer composites with antifungal and bacteriostatic properties. Chem Mater 17(21):5255–5262CrossRefGoogle Scholar
  13. Communication from the Commission—Towards a European strategy for nanotechnology (2004) Luxembourg: Office for Official Publications of the European Communities 2004, p 24Google Scholar
  14. Cui D, Tian F, Ozkan CS, Wang M, Gao H (2005) Effect of single wall carbon nanotubes on human HEK293 cells. Toxicol Lett 155(1):73–85PubMedCrossRefGoogle Scholar
  15. Cushen M, Kerry J, Morris M, Cruz-Romero M, Cummins E (2012) Nanotechnologies in the food industry recent developments, risks and regulation. Trends Food Sci Technol 24:30–46CrossRefGoogle Scholar
  16. Dhawan A, Sharma V (2010) Toxicity assessment of nanomaterials: methods and challenges. Anal Bioanal Chem 398:589–605CrossRefGoogle Scholar
  17. Donaldson K, Stone V, Clouter A, Renwick L, MacNee W (2001) Ultrafine particles. Occup Environ Med 58(3):211–216. 199CrossRefGoogle Scholar
  18. Droval G, Aranberri I, Bilbao A, German L, Verelst M, Dexpert-Ghys J (2008) Antimicrobial activity of nanocomposites: poly(amide) 6 and low density poly(ethylene) filled with zinc oxide e-Polymer:128Google Scholar
  19. Duncan TV (2011) Applications of nanotechnology in food packaging and food safety: barrier materials, antimicrobials and sensors. J Colloid Interface Sci 363:1–24PubMedCrossRefGoogle Scholar
  20. Emamifar A, Kadivar M, Shahedi M, Soleimanian-Zad S (2010) Evaluation of nanocomposite packaging containing Ag and ZnO on shelf life of fresh orange juice. Innovative Food Sci Emerg Technol 11:742–748CrossRefGoogle Scholar
  21. Emamifar A, Kadivar M, Shahedi M, Soleimanian-Zad S (2011) Effect of nanocomposite packaging containing Ag and ZnO on inactivation of Lactobacillus plantarum in orange juice. Food Control 22(3–4):408–413CrossRefGoogle Scholar
  22. Esteban-Tejeda L, Malpartida F, Esteban-Cubillo A, Pecharromán C, Moya JS (2009) Antibacterial and antifungal activity of a soda-lime glass containing copper nanoparticles. Nanotechnology 20:50Google Scholar
  23. Evans SM, Ashwood P, Warley A, Berisha F, Thompson RP, Powell JJ (2002) The role of dietary microparticles calcium in apoptosis interleukin-1beta release of intestinal macrophages. Gastroenterology 1235:1543–1553CrossRefGoogle Scholar
  24. Fu G, Vary PS, Lin C-T (2005) Anatase TiO2 nanocomposites for antimicrobial coatings. J Phys Chem B 109:8889–8898PubMedCrossRefPubMedCentralGoogle Scholar
  25. Galeano B, Korff E, Nicholson WL (2003) Inactivation of vegetative cells, but not spores, of Bacillus anthracis, B. cereus, and B. subtilis on stainless steel surfaces coated with an antimicrobial silver- and zinc-containing zeolite formulation. Appl Environ Microbiol 69:4329–4331PubMedPubMedCentralCrossRefGoogle Scholar
  26. Gergely A, Chaudhry Q, Bowman DM (2010) Regulatory perspectives on nanotechnologies in food and food contact materials. In: Hodge GA, Bowman BM, Maynard AD (eds) International handbook on regulating technologies, Edward Elgar, Cheltenham, 321–341Google Scholar
  27. Griffitt RJ, Luo J, Gao J, Bonzongo J-C, Barber DS (2008) Nanomaterials in the environment, effects of particle composition and species on toxicity of metallic nanomaterials in aquatic organisms. Environ Toxicol Chem 27(9):1972–1978PubMedCrossRefPubMedCentralGoogle Scholar
  28. Gurr JR, Wang ASS, Chen CH, Jan KY (2005) Ultrafine titanium dioxide particles in the absence of photoactivation can induce oxidative damage to human bronchial epithelial cells. Toxicology 213:66–73PubMedCrossRefPubMedCentralGoogle Scholar
  29. Hamal DB, Haggstrom JA, Marchin GL, Ikenberry MA, Hohn K, Klabunde KJ (2010) A multifunctional biocide/sporocide and photocatalyst based on titanium dioxide (TiO2) codoped with silver, carbon, and sulfur. Langmuir 26(4):2805–2810PubMedCrossRefGoogle Scholar
  30. Handy RD, Shaw BJ (2007) Toxic effects of nanoparticles and nanomaterials: implications for public health, risk assessment and the public perception of nanotechnology. Health Risk Soc 9:125–144CrossRefGoogle Scholar
  31. Health Council Netherlands (2006) Health significance of nanotechnologies. The Hague: Health Council of the Netherlands, Publication No. 2006/06Google Scholar
  32. Higashisaka K, Yoshioka Y, Tsutsumi Y (2015) Applications and safety of nanomaterials used in the food industry, ©2015 Food Safety Commission, Cabinet Office, Government of Japan. Scholar
  33. Hodge G, Bowman D, Ludlow K (2007) New global frontiers in regulation: In: The age of nanotechnology. Edward Elgar, CheltenhamCrossRefGoogle Scholar
  34. Huang L, Li D-Q, Evans DG, Duan X (2005a) Preparation of highly dispersed MgO and its bactericidal properties. Eur Phys J D 34:321–323CrossRefGoogle Scholar
  35. Huang L, Li D-Q, Lin Y-J, Wie M, Evans DG, Duan X (2005b) Controllable preparation of Nano-MgO and investigation of its bactericidal properties. J Inorg Biochem 99(5):986–993PubMedCrossRefGoogle Scholar
  36. Inoue Y, Hoshino M, Takahashi H, Noguchi T, Murata T, Kanzaki Y, Hamashima H, Sasatsu M (2002) Bactericidal activity of Ag-zeolite mediated by reactive oxygen species under aerated conditions. J Inorg Biochem 92:37–42PubMedCrossRefGoogle Scholar
  37. Jin T, Sun D, Su JY, Zhang H, Sue H-J (2009) Antimicrobial efficacy of zinc oxide quantum dots against Listeria monocytogenes, Salmonella Enteritidis, and Escherichia coli O157:H7. J Food Sci 74:M46–M52PubMedCrossRefGoogle Scholar
  38. Jones CF, Grainger DW (2009) In vitro assessments of nanomaterial toxicity. Adv Drug Deliv Rev 61:438–456PubMedPubMedCentralCrossRefGoogle Scholar
  39. Kang S, Pinault M, Pfefferle LD, Elimelech M (2007) Single-walled carbon nanotubes exhibit strong antimicrobial activity. Langmuir 23(17):8670–8673PubMedCrossRefGoogle Scholar
  40. Kang S, Mauter MS, Elimelech M (2009) Microbial cytotoxicity of carbon-based nanomaterials: implications for river water and wastewater effluent. Environ Sci Technol 43(7):2648–2653PubMedPubMedCentralCrossRefGoogle Scholar
  41. Kangwansupamonkon W, Lauruengtana V, Surassmo S, Ruktanonchai U (2009) Antibacterial effect of apatite-coated titanium dioxide for textiles applications. Nanomed Nanotechnol Biol Med 5:240–249CrossRefGoogle Scholar
  42. Kim B, Kim D, Cho D, Cho S (2003) Bactericidal effect of TiO2 photocatalyst on selected food-borne pathogenic bacteria. Chemosphere 52(1):277–281PubMedCrossRefGoogle Scholar
  43. Kong H, Song J, Jang J (2010) Photocatalytic antibacterial capabilities of TiO2−biocidal polymer nanocomposites synthesized by a surface-initiated photopolymerization. Environ Sci Technol 44(14):5672–5676PubMedCrossRefGoogle Scholar
  44. Kostarelos K, Bianco A, Prato M (2008) Hype around nanotubes creates unrealistic hopes. Nature 453(7193):280PubMedCrossRefGoogle Scholar
  45. Kubacka A, Cerrada ML, Serrano C, Fernández-García M, Ferrer M, Fernández-García M (2009) Plasmonic nanoparticle/polymer nanocomposites with enhanced photocatalytic antimicrobial properties. J Phys Chem C 113:9182–9190CrossRefGoogle Scholar
  46. Lee S (2009) Multifunctionality of layered fabric systems based on electrospun polyurethane/zinc oxide nanocomposite fibers. J Appl Polym Sci 114:3652–3658CrossRefGoogle Scholar
  47. Li X, Xing Y, Jiang Y, Ding Y, Li W (2009) Antimicrobial activities of ZnO powder-coated PVC film to inactivate food pathogens. Int J Food Sci Technol 44(11):2161–2168CrossRefGoogle Scholar
  48. Lin Y-J, Li D-Q, Wang G, Huang L, Duan X (2005) Preparation and bactericidal property of MgO nanoparticles on γ-Al2O3. J Mater Sci Mater Med 16(1):53–56Google Scholar
  49. Liu Y, He L, Mustapha A, Li H, Hu ZQ, Lin M (2009) Antibacterial activities of zinc oxide nanoparticles against Escherichia coli O157:H7. J Appl Microbiol 107(4):1193–1201PubMedCrossRefGoogle Scholar
  50. Lu Z, Li CM, Bao H, Qiao Y, Toh Y, Yang X (2008) Mechanism of antimicrobial activity of CdTe quantum dots. Langmuir 24(10):5445–5452PubMedCrossRefGoogle Scholar
  51. Lu Z, Li CM, Baoi H, Qiao Y, Bao Q (2009) Photophysical mechanism for quantum dots-induced bacterial growth inhibition. J Nanosci Nanotechnol 9(5):3252–3255PubMedCrossRefGoogle Scholar
  52. Lu Y, Chen Y, Lin H, Wang C, Yang Z (2010) Preperation of chitosan nanoparticles and their application to Antheraea pernyi Silk. J Appl Polym Sci 117:3362–3369Google Scholar
  53. Mary G, Bajpai SK, Chand N (2009) Copper (II) ions and copper nanoparticles-loaded chemically modified cotton cellulose fibers with fair antibacterial properties. J Appl Polym Sci 113:757–766CrossRefGoogle Scholar
  54. Monteiro DR, Gorup LF, Takamiya AS, Ruvollo-Filho AC, de Camargo ER, Barbosa DB (2009) The growing importance of materials that prevent microbial adhesion: antimicrobial effect of medical devices containing silver. Int J Antimicrob Agents 34(2):103–110PubMedCrossRefPubMedCentralGoogle Scholar
  55. Morsy MK, Khalaf HH, Sharoba AM, El-Tanahi HH, Cutter CN (2014) Incorporation of essential oils and nanoparticles in pullulan films to control foodborne pathogens on meat and poultry products. J Food Sci 79:M675–M682PubMedCrossRefGoogle Scholar
  56. Motlagh NV, Mosavian MTH, Mortazavi SA (2012) Effect of polyethylene packaging modified with silver particles on the microbial, sensory and appearance of dried barberry. Packag Technol Sci 26:39–49CrossRefGoogle Scholar
  57. Neethirajan S, Jayas DS (2011) Nanotechnology for the food and bioprocessing industries. Food Bioprocess Technol 4:39–47CrossRefGoogle Scholar
  58. Nel A, Xia T, Mädler L, Li N (2006) Toxic potential of materials at the nanolevel. Science 311(5761):622–627PubMedCrossRefGoogle Scholar
  59. Oberdorster G, Maynard A, Donaldson K, Castranova V, Fitzpatrick J, Ausman K, Carter J, Karn B, Kreyling W, Lai D (2005) Principles for characterizing the potential human health effects from exposure to nanomaterials: elements of a screening strategy. Part Fibre Toxicol 2:8PubMedPubMedCentralCrossRefGoogle Scholar
  60. Palza H, Gutiérrez S, Delgado K, Salazar O, Fuenzalida V, Avila JI, Figueroa G, Quijada R (2010) Toward tailor-made biocide materials based on poly(propylene)/copper nanoparticles. Macromol Rapid Commun 31(6):563–567PubMedCrossRefGoogle Scholar
  61. Perelshtein I, Applerot G, Perkas N, Wehrschuetz-Sigl E, Hasmann A, Guebitz G, Gedanken A (2009) CuO–cotton nanocomposite: formation, morphology, and antibacterial activity. Surf Coat Technol 204(1–2):54–57CrossRefGoogle Scholar
  62. Poland CA, Duffin R, Kinloch I, Maynard A, Wallace WAH, Seaton A, Stone V, Brown S, MacNee W, Donaldson K (2008) Carbon nanotubes introduced into the abdominal cavity of mice show asbestos-like pathogenicity in a pilot study. Nat Nanotechnol 3(7):423–428PubMedCrossRefGoogle Scholar
  63. Powers KW, Brown SC, Krishna VB, Wasdo SC, Moudgil BM, Roberts SM (2006) Research strategies for safety evaluation of nanomaterials. Part VI: Characterization of nanoscale particles for toxicological evaluation. Toxicol Sci 90(2):296–303PubMedCrossRefGoogle Scholar
  64. Powers KW, Moudgil BM, Roberts SM (2007) Characterization of the size, shape and state of dispersion of nanoparticles for toxicological studies. Nanotoxicology 1(1):42–51CrossRefGoogle Scholar
  65. Priester JH, Stoimenov PK, Mielke RE, Webb SM, Ehrhardt C, Zhang JP, Stucky GD, Holden PA (2009) Effects of soluble cadmium salts versus CdSe quantum dots on the growth of planktonic Pseudomonas aeruginosa. Environ Sci Technol 43(7):2589–2594PubMedCrossRefGoogle Scholar
  66. Qi L, Xu Z, Jiang X, Hu C, Zou X (2004) Preparation and antibacterial activity of chitosan nanoparticles. Carbohydr Res 339(16):2693–2700PubMedCrossRefGoogle Scholar
  67. Ren G, Hu DH, Cheng EWC, Vargas-Reus MA, Reip P, Allaker RP (2009) Characterization of copper oxide nanoparticles for antimicrobial applications. Int J Antimicrob Agents 33:587–590PubMedCrossRefGoogle Scholar
  68. Rispoli F, Angelov A, Badia D, Kumar A, Seal S, Shah V (2010) Understanding the toxicity of aggregated zero valent copper nanoparticles against Escherichia coli. J Hazard Mater 180:212PubMedCrossRefGoogle Scholar
  69. Roach S (2006) Nanotechnology passes first toxicity hurdle.
  70. Robertson JMC, Robertson PKJ, Lawton LA (2005) A comparison of the effectiveness of TiO2 photocatalysis and UVA photolysis for the destruction of three pathogenic micro-organisms. J Photochem Photobiol, A 175(1):51–56CrossRefGoogle Scholar
  71. SCENIHR (2007a) Scientific Committee on Emerging and Newly Identified Health Risk SCENIHR. Opinion on: the appropriateness of the risk assessment methodology in accordance with the technical guidance documents for new and existing substances for assessing the risks of nanomaterials European Commission Health and Consumer Protection Directorate-General. Directorate C—Public Health and Risk Assessment C7—Risk AssessmentGoogle Scholar
  72. SCENIHR (2007b) Scientific Committee on Emerging and Newly Identified Health Risk SCENIHR. Opinion on: the scientific aspects of the existing and proposed definitions relating to products of nanoscience and nanotechnologies European Commission Health and Consumer Protection Directorate-General. Directorate C—Public Health and Risk Assessment C7—Risk AssessmentGoogle Scholar
  73. Sharifi S, Behzadi S, Laurent S, Forrest ML, Stroeve P, Mahmoudi M (2012) Toxicity of nanomaterials. Chem Soc Rev 41:2323–2343PubMedCrossRefGoogle Scholar
  74. Sharma C, Dhiman R, Rokana N, Panwar H (2017) Nanotechnology: an untapped resource for food packaging. Nanotechnol Food Packag 8(1735):1–22Google Scholar
  75. Sevinç BA, Hanley L (2010) Antibacterial activity of dental composites containing zinc oxide nanoparticles. J Biomed Mater Res, Part B 94(1):22–31Google Scholar
  76. Silvestre C, Duraccio D, Cimmino S (2011) Food packaging based on polymer nanomaterials. Prog Polym Sci 36:1766–1782CrossRefGoogle Scholar
  77. Singh T, Shukla S, Kumar P, Wahla V, Bajpai VK, Rather IA (2017) Application of nanotechnology in food science: perception and overview. Front Microbiol 8:1501PubMedPubMedCentralCrossRefGoogle Scholar
  78. Shintani H, Kurosu S, Miki A, Hayashi F, Kato S (2006) Sterilization efficiency of the photocatalyst against environmental microorganisms in a health care facility. Biocontrol Sci 11(1):17–26PubMedCrossRefGoogle Scholar
  79. Stoimenov PK, Klinger RL, Marchin GL, Klabunde KJ (2002) Metal oxide nanoparticles as bactericidal agents. Langmuir 18(17):6679–6686CrossRefGoogle Scholar
  80. Takagi A, Hirose A, Nishimura T, Fukumori N, Ogata A, Ohashi N, Kitajima S, Kanno J (2008) Induction of mesothelioma in p53± mouse by intraperitoneal application of multi-wall carbon nanotube. J Toxicol Sci 33(1):105–116PubMedCrossRefGoogle Scholar
  81. Tam KH, Djurišic AB, Chan CMN, Xi YY, Tse CW, Leung YH, Chan WK, Leung FCC, Au DWT (2008) Antibacterial activity of ZnO nanorods prepared by a hydrothermal method. Thin Solid Films 516(18):6167–6174CrossRefGoogle Scholar
  82. The Royal Society and the Royal Academy of Engineering (2004) The Royal Society and the Royal Academy of Engineering. Nanoscience and nanotechnologies: opportunities and uncertainties. London, UKGoogle Scholar
  83. Thomas T, Thomas K, Sadrieh N, Savage N, Adair P, Bronaugh R (2006) Research strategies for safety evaluation of nanomaterials, Part VII: Evaluating consumer exposure to nanoscale materials. Toxicol Sci 91(1):14–19PubMedCrossRefGoogle Scholar
  84. US Food and Drug Administration (2009) Food additives permitted for direct addition to food for human nutrition. Fed. Regist. 74:11476Google Scholar
  85. Warheit DB (2008) How meaningful are the results of nanotoxicity studies in the absence of adequate material characterization? Toxicol Sci 101(2):183–185PubMedCrossRefGoogle Scholar
  86. Xie Y, He Y, Irwin PL, Jin T, Shi X (2011) Antibacterial activity and mechanism of action of zinc oxide nanoparticles against Campylobacter jejuni. Appl Environ Microbiol 77(7):2325–2331PubMedPubMedCentralCrossRefGoogle Scholar
  87. Xing K, Chen XG, Kong M, Liu CS, Cha DS, Park HJ (2009) Effect of oleoyl-chitosan nanoparticles as a novel antibacterial dispersion system on viability, membrane permeability, and cell morphology of Escherichia coli and Staphylococcus aureus. Carbohydr Polym 76(1):17–22CrossRefGoogle Scholar
  88. Yang FM, Li HM, Li F, Xin ZH, Zhao LY, Zheng YH, Hu QH (2010) Effect of nano-packing on preservation quality of fresh strawberry (Fragaria ananassa Duch. Cv Fengxiang) during storage at 4 °C. J Food Chem 75:C236–C240CrossRefGoogle Scholar
  89. Yoon K-Y, Byeon JH, Park J-H, Hwang J (2007) Susceptibility constants of Escherichia coli and Bacillus subtilis to silver and copper nanoparticles. Sci Total Environ 373(2–3):572–575PubMedCrossRefPubMedCentralGoogle Scholar
  90. Yuvaraj D, Kaushik R, Rao KN (2010) Optical, field-emission, and antimicrobial properties of ZnO nanostructured films deposited at room temperature by activated reactive evaporation. ACS Appl Mater Int 2(4):1019–1024CrossRefGoogle Scholar
  91. Zeng H, Gao C, Wang Y, Watts PCP, Kong H, Cui X (2006) In situ polymerization approach to multiwalled carbon nanotubes-reinforced nylon 1010 composites: mechanical properties and crystallization behavior. Polymer 47:113–122CrossRefGoogle Scholar
  92. Zhang Q, Kusaka Y, Zhu X, Sato K, Mo Y, Kluz T et al (2003) Comparative toxicity of standard nickel and ultrafine nickel in lung after intratracheal instillation. J Occup Health 45:23–30PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Engineering Faculty, Food Engineering DepartmentEge UniversityBornovaTurkey
  2. 2.Whirlpool CorporationManisaTurkey

Personalised recommendations