Microparticle-Supported Nanocomposites for Safe Environmental Applications

  • Sanchita Mandal
  • Binoy SarkarEmail author
  • Raj Mukhopadhyay
  • Jayanta Kumar Biswas
  • K. M. Manjaiah


Utilization of nanotechnology and nanomaterials is an integral part of modern life. The increased use of nanomaterials in various consumer products, industries, medical instruments, and information technology and energy sectors has created research interest because of their potential toxicity for the environment. Nanomaterials can also be added directly and indirectly to the soil and water treatment plants to reduce pollutant concentrations. Nanoparticles may enter the aquatic system through runoff and industrial effluent discharge, therefore, potentially contaminate both the aquatic and terrestrial systems. Researchers have used laboratory experiments to understand the effect of nanomaterials and their transformation in water and soil environment. The transformation of nanoparticles in the environment involves various physical and chemical processes, and their degradation/transformation products may introduce further toxicity. Various microparticles or host materials can be used to support or coat nanoparticles in order to reduce their toxicity. Microparticles including clay minerals, polymer, carbon-based materials (biochar) are popular to support nanoparticles due to their large surface area and improved functional characteristics. This chapter aims to give an overview of the risks associated with using nanoparticles, and how to reduce the possible toxicity related to nanoparticles by using microparticle host materials.


Microparticles Nanoparticles Clay mineral Polymer Biochar Toxicity 


  1. Aitken RJ, Chaudhry MQ, Boxall ABA, Hull M (2006) Manufacture and use of nanomaterials: current status in the UK and global trends. Occup Med 56:300–306CrossRefGoogle Scholar
  2. Batley GE, Kirby JK, McLaughlin MJ (2013) Fate and risks of nanomaterials in aquatic and terrestrial environments. Acc Chem Res 46:854–862CrossRefGoogle Scholar
  3. Bhat AH, Rehman WU, Khan IU, Khna I, Ahmad S, Ayoub M, Usmani MA (2018) Nanocomposite membrane for environmental remediation. In: Jawaid M, Khan MM (eds) Polymer-based nanocomposites for energy and environmental applications. Woodhead Publishing, Cambridge, MA, pp 407–440CrossRefGoogle Scholar
  4. Brayner R, Ferrari-Iliou R, Brivois N, Djediat S, Benedetti MF, Fiévet F (2006) Toxicological impact studies based on Escherichia coli bacteria in ultrafine ZnO nanoparticles colloidal medium. Nano Lett 6:866–870CrossRefGoogle Scholar
  5. British Standards (BSI) (2007). Terminology for nanomaterials. Public Available Specification No. 1362007. British Standards Institution, London, 16Google Scholar
  6. Cai X, Lee A, Ji Z, Huang C, Chang CH, Wang X, Liao YP, Xia T, Li R (2017) Reduction of pulmonary toxicity of metal oxide nanoparticles by phosphonate-based surface passivation. Part Fibre Toxicol 14:13CrossRefGoogle Scholar
  7. Chen X, Mao SS (2007) Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. Chem Rev 107:2891–2959CrossRefGoogle Scholar
  8. Cho HH, Lee T, Hwang SJ, Park JW (2005) Iron and organo-bentonite for the reduction and sorption of trichloroethylene. Chemosphere 58:103–108CrossRefGoogle Scholar
  9. Churchman GJ, Gates WP, Theng BKG, Yuan G (2006) Clays and clay minerals for pollution control. In: Bergaya F, Theng BKG, Lagaly G (eds) Developments in clay science. Elsevier, New York, pp 625–675Google Scholar
  10. Clough TJ, Condron LM (2010) Biochar and the nitrogen cycle: introduction. J Environ Qual 39:1218–1223CrossRefGoogle Scholar
  11. Colvin VL (2003) The potential environmental impact of engineered nanomaterials. Nat Biotechnol 21:1166CrossRefGoogle Scholar
  12. Conti JA, Killpack K, Gerritzen G, Huang L, Mircheva M, Delmas M, Harthorn BH, Appelbaum RP, Holden PA (2008) Health and safety practices in the nanomaterials workplace: results from an international survey. Environ Sci Technol 42:3155–3162CrossRefGoogle Scholar
  13. Duan L, Palanisami T, Liu Y, Dong Z, Mallavarapu M, Kuchel T, Semple KT, Naidu R (2014) Effects of ageing and soil properties on the oral bioavailability of benzo[a]pyrene using a swine model. Environ Int 70:192–202CrossRefGoogle Scholar
  14. Ezzatahmadi N, Ayoko GA, Millar GJ, Speight R, Yan C, Li J, Li S, Zhu J, Xi Y (2017) Clay-supported nanoscale zero-valent iron composite materials for the remediation of contaminated aqueous solutions: a review. Chem Eng J 312:336–350CrossRefGoogle Scholar
  15. Franklin NM, Rogers NJ, Apte SC, Batley GE, Gadd GE, PS Casey PS (2007) Comparative toxicity of nanoparticulate ZnO, bulk ZnO, and ZnCl to a freshwater microalga (Pseudokirchneriella subcapitata): the importance of particle solubility. Environ Sci Technol 41(24):8484–8490CrossRefGoogle Scholar
  16. Hansen BØ, Kwan P, Benjamin MM, Li CW, Korshin GV (2001) Use of iron oxide-coated sand to remove strontium from simulated hanford tank wastes. Environ Sci Technol 35:4905–4909CrossRefGoogle Scholar
  17. Hirano M, Ota K, Iwata H (2004) Direct formation of anatase (TiO2)/silica (SiO2) composite Nanoparticles with high phase stability of 1300 °C from acidic solution by hydrolysis under hydrothermal condition. Chem Mater 16:3725–3732CrossRefGoogle Scholar
  18. Hoyt VW, Mason E (2008) Nanotechnology: emerging health issues. J Chem Health Safety 15:10–15CrossRefGoogle Scholar
  19. Hubbe MA, Rojas OJ, Lucia LA, Sain M (2008) Cellulosic nanocomposites: a review. Bio Resources 3:929–980Google Scholar
  20. Inyang MI, Gao B, Yao Y, Xue Y, Zimmerman A, Mosa A, Pullammanappallil P, Ok YS, Cao X (2015) A review of biochar as a low-cost adsorbent for aqueous heavy metal removal. Crit Rev Env Sci Technol 46:406–433CrossRefGoogle Scholar
  21. Jiang C, Markutsya S, Pikus Y, Tsukruk VV (2004) Freely suspended nanocomposite membranes as highly sensitive sensors. Nat Mater 3:721CrossRefGoogle Scholar
  22. Jiang Z, Lv L, Zhang W, Du Q, Pan B, Yang L, Zhang Q (2011) Nitrate reduction using nanosized zero-valent iron supported by polystyrene resins: role of surface functional groups. Water Res 45:2191–2198CrossRefGoogle Scholar
  23. Joseph S, Lehmann J (2009) Biochar for environmental management: science and technology. Earthscan Pub., LondonGoogle Scholar
  24. Kahru A, Dubourguier HC, Blinova I, Ivask A, Kasemets K (2008) Biotests and biosensors for ecotoxicology of metal oxide nanoparticles: a minireview. Sensors 8:5153CrossRefGoogle Scholar
  25. Karn B, Kuiken T, Otto M (2009) Nanotechnology and in situ remediation: a review of the benefits and potential risks. Environ Health Perspect 117:1813–1831CrossRefGoogle Scholar
  26. Katsoyiannis IA, Zouboulis AI (2002) Removal of arsenic from contaminated water sources by sorption onto iron-oxide-coated polymeric materials. Water Res 36:5141–5155CrossRefGoogle Scholar
  27. Klaine SJ, Alvarez PJJ, Batley GE, Fernandes TF, Handy RD, Lyon DY, Mahendra S, McLaughlin MJ, Lead JR (2008) Nanomaterials in the environment: behavior, fate, bioavailability, and effects. Environ Toxicol Chem 27:1825–1851CrossRefGoogle Scholar
  28. Kloss S, Zehetner F, Dellantonio A, Hamid R, Ottner F, Liedtke V, Schwanninger M, Gerzabek MH, Soja G (2012) Characterization of slow pyrolysis biochars: effects of feedstocks and pyrolysis temperature on biochar properties. J Environ Qual 41:990–1000CrossRefGoogle Scholar
  29. Kumar A, Jakhmola A (2007) RNA-mediated fluorescent Q-PbS nanoparticles. Langmuir 23:2915–2918CrossRefGoogle Scholar
  30. Kunhikrishnan A, Shon HK, Bolan NS, El Saliby I, Vigneswaran S (2015) Sources, distribution, environmental fate, and ecological effects of nanomaterials in wastewater streams. Crit Rev Env Sci Technol 45:277–318CrossRefGoogle Scholar
  31. Lam CW, James JT, McCluskey R, Hunter RL (2004) Pulmonary toxicity of single-wall carbon nanotubes in mice 7 and 90 days after intratracheal instillation. Toxicol Sci 77:126–134CrossRefGoogle Scholar
  32. Lead JR, Batley GE, Alvarez PJJ, Marie-Noële Croteau, Handy RD, McLaughlin MJ, Judy JD, Schirmer K (2018) Nanomaterials in the environment: behavior, fate, bioavailability, and effects: an updated review. Environ Toxicol Chem 37:2029–2063CrossRefGoogle Scholar
  33. Lee KJ, Nallathamby PD, Browning LM, Osgood CJ, Xu XHN (2007) In vivo imaging of transport and biocompatibility of single silver nanoparticles in early development of zebrafish embryos. ACS Nano 1:133–143CrossRefGoogle Scholar
  34. Lehmann J, Joseph S (2015) Biochar for environmental management: science, technology and implementation. RoutledgeGoogle Scholar
  35. Lehmann J, Rillig MC, Thies J, Masiello CA, Hockaday WC, Crowley D (2011) Biochar effects on soil biota: a review. Soil Biol Biochem 43:1812–1836CrossRefGoogle Scholar
  36. Lin CJ, Lo SL, Liou YH (2005) Degradation of aqueous carbon tetrachloride by nanoscale zerovalent copper on a cation resin. Chemosphere 59:1299–1307CrossRefGoogle Scholar
  37. Mandal S, Sarkar B, Bolan N, Ok YS, Naidu R (2016) Enhancement of chromate reduction in soils by surface modified biochar. J Environ Manage 186:277–284CrossRefGoogle Scholar
  38. Marti E, Variatza E, Balcazar JL (2014) The role of aquatic ecosystems as reservoirs of antibiotic resistance. Trends Microbiol 22:36–41CrossRefGoogle Scholar
  39. Meyer S, Glaser B, Quicker P (2011) Technical, economical, and climate-related aspects of biochar production technologies: a literature review. Environ Sci Technol 45:9473–9483CrossRefGoogle Scholar
  40. Mian MM, Liu G (2018) Recent progress in biochar-supported photocatalysts: synthesis, role of biochar, and applications. RSC Adv 8:14237–14248CrossRefGoogle Scholar
  41. Ngomsik AF, Bee A, Siaugue JM, Talbot D, Cabuil V, Cote G (2009) Co(II) removal by magnetic alginate beads containing Cyanex 272®. J Hazard Mater 166:1043–1049CrossRefGoogle Scholar
  42. Peralta-Videa JR, Zhao L, Lopez-Moreno ML, de la Rosa G, Hong J, Gardea-Torresdey JL (2011) Nanomaterials and the environment: a review for the biennium 2008–2010. J Hazard Mater 186:1–15CrossRefGoogle Scholar
  43. Petrie B, Barden R, Kasprzyk-Hordern B (2015) A review on emerging contaminants in wastewaters and the environment: current knowledge, understudied areas and recommendations for future monitoring. Water Res 72:3–27CrossRefGoogle Scholar
  44. Ram MK, Yavuz Ö, Lahsangah V, Aldissi M (2005) CO gas sensing from ultrathin nano-composite conducting polymer film. Sens Actuators, B 106:750–757CrossRefGoogle Scholar
  45. Ray PC, Yu H, Fu PP (2009) Toxicity and environmental risks of nanomaterials: challenges and future needs. J Environ Sci Health Part C 27:1–35CrossRefGoogle Scholar
  46. Rocher V, Siaugue JM, Cabuil V, Bee A (2008) Removal of organic dyes by magnetic alginate beads. Water Res 42:1290–1298CrossRefGoogle Scholar
  47. Rusmin R, Sarkar B, Tsuzuki T, Kawashima N, Naidu R (2017) Removal of lead from aqueous solution using superparamagnetic palygorskite nanocomposite: material characterization and regeneration studies. Chemosphere 186:1006–1015CrossRefGoogle Scholar
  48. Samrot A, Bhavya KS, Sahithya CS, Sowmya N (2018) Evaluation of toxicity of chemically synthesised gold nanoparticles against Eudrilus eugeniae. J Clust Sci Scholar
  49. Sarkar B, Liu E, McClure S, Sundaramurthy J, Srinivasan M, Naidu R (2015) Biomass derived palygorskite–carbon nanocomposites: synthesis, characterisation and affinity to dye compounds. Appl Clay Sci 114:617–626CrossRefGoogle Scholar
  50. Sarkar B, Xi Y, Megharaj M, Krishnamurti GSR, Bowman M, Rose H, Naidu R (2012) Bioreactive organoclay: a new technology for environmental remediation. Crit Rev Env Sci Technol 42:435–488CrossRefGoogle Scholar
  51. Scarano G, Morelli E (2003) Properties of phytochelatin-coated CdS nanocrystallites formed in a marine phytoplanktonic alga (Phaeodactylum tricornutum, Bohlin) in response to Cd. Plant Sci 165:803–810CrossRefGoogle Scholar
  52. Shatkin JA (2017) Nanotechnology: health and environmental risks, 2nd ed. CRC Press Taylor & Francis Pub., LondonCrossRefGoogle Scholar
  53. Shi L, Lin YM, Zhang X, Chen Z (2011) Synthesis, characterization and kinetics of bentonite supported nZVI for the removal of Cr(VI) from aqueous solution. Chem Eng J 171:612–617CrossRefGoogle Scholar
  54. Shichi T, Takagi K (2000) Clay minerals as photochemical reaction fields. J Photoch Photobio C 1:113–130CrossRefGoogle Scholar
  55. Sohi SP (2012) Carbon storage with benefits. Science 338:1034–1035CrossRefGoogle Scholar
  56. Son YH, Lee JK, Soong Y, Martello D, Chyu MK (2012) Heterostructured zero valent iron–montmorillonite nanohybrid and their catalytic efficacy. Appl Clay Sci 62–63:21–26CrossRefGoogle Scholar
  57. Stahlhofen WG, Rudlof G, James AC (1989) Intercomparison of experimental regional aerosol deposition data. J Aerosol Med 2:285–308CrossRefGoogle Scholar
  58. Stone V, Nowack B, Baun A, van den Brink N, von der Kammer F, Dusinska M, Handy R, Hankin S, Hassellöv M, Joner E, Fernandes TF (2010) Nanomaterials for environmental studies: classification, reference material issues, and strategies for physico-chemical characterisation. Sci Total Environ 408:1745–1754CrossRefGoogle Scholar
  59. Tan X, Liu Y, Gu Y, Xu Y, Zeng G, Hu X, Liu S, Wang X, Liu S, Li J (2016) Biochar-based nano-composites for the decontamination of wastewater: a review. Bioresour Technol 212:318–333CrossRefGoogle Scholar
  60. Tong Z, Bischoff M, Nies L, Applegate B, Turco RF (2007) Impact of fullerene (C60) on a soil microbial community. Environ Sci Technol 41:2985–2991CrossRefGoogle Scholar
  61. Vaughan RL, Reed BE (2005) Modeling As(V) removal by a iron oxide impregnated activated carbon using the surface complexation approach. Water Res 39:1005–1014CrossRefGoogle Scholar
  62. Wang MC, Sheng GD, Qiu YP (2014) A novel manganese-oxide/biochar composite for efficient removal of lead(II) from aqueous solutions. Int J Environ Sci Technol 12:1719–1726CrossRefGoogle Scholar
  63. Wiesner MR, Lowry GV, Jones KL, Hochella JMF, Di Giulio RT, Casman E, Bernhardt ES (2009) Decreasing uncertainties in assessing environmental exposure, risk, and ecological implications of nanomaterials. Environ Sci Technol 43:6458–6462CrossRefGoogle Scholar
  64. Xi Y, Megharaj M, Naidu R (2011) Dispersion of zerovalent iron nanoparticles onto bentonites and use of these catalysts for orange II decolourisation. Appl Clay Sci 53:716–722CrossRefGoogle Scholar
  65. Xiaoying W, Yumin D, Jiwen L (2008) Biopolymer/montmorillonite nanocomposite: preparation, drug-controlled release property and cytotoxicity. Nanotechnology 19:1–7Google Scholar
  66. Yew SP, Tang HY, Sudesh K (2006) Photocatalytic activity and biodegradation of polyhydroxybutyrate films containing titanium dioxide. Polym Degrad Stab 91:1800–1807CrossRefGoogle Scholar
  67. Zekic E, Vukovic Z, Halkijevic I (2018) Application of nanotechnology in wastewater treatment. Gradevinar 70:315–323Google Scholar
  68. Zhang M, Gao B, Yao Y, Xue Y, Inyang M (2012a) Synthesis of porous MgO-biochar nanocomposites for removal of phosphate and nitrate from aqueous solutions. Chem Eng J 210:26–32CrossRefGoogle Scholar
  69. Zhang M, Gao B, Yao Y, Xue Y, Inyang M (2012b) Synthesis, characterization, and environmental implications of graphene-coated biochar. Sci Total Environ 435–436:567–572CrossRefGoogle Scholar
  70. Zhang Y, Li Y, Li J, Sheng G, Zhang Y, Zheng X (2012c) Enhanced Cr(VI) removal by using the mixture of pillared bentonite and zero-valent iron. Chem Eng J 185–186:243–249CrossRefGoogle Scholar
  71. Zhang D, Li Y, Tong S, Jiang X, Wang L, Sun X, Li J, Liu X, Shen J (2018) Biochar supported sulfide-modified nanoscale zero-valent iron for the reduction of nitrobenzene. RSC Adv 8:22161–22168CrossRefGoogle Scholar
  72. Zhao X, Lv L, Pan B, Zhang W, Zhang S, Zhang Q (2011) Polymer-supported nanocomposites for environmental application: a review. Chem Eng J 170:381–394CrossRefGoogle Scholar
  73. Zhou Y, Gao B, Zimmerman AR, Fang J, Sun Y, Cao X (2013) Sorption of heavy metals on chitosan-modified biochars and its biological effects. Chem Eng J 231:512–518CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Sanchita Mandal
    • 1
  • Binoy Sarkar
    • 1
    • 2
    Email author
  • Raj Mukhopadhyay
    • 3
  • Jayanta Kumar Biswas
    • 4
  • K. M. Manjaiah
    • 5
  1. 1.Future Industries InstituteUniversity of South AustraliaMawson LakesAustralia
  2. 2.Department of Animal and Plant SciencesThe University of SheffieldSheffieldUK
  3. 3.Division of Irrigation and Drainage EngineeringICAR-Central Soil Salinity Research InstituteKarnalIndia
  4. 4.Department of Ecological StudiesInternational Centre for Ecological Engineering, University of Kalyani, KalyaniNadiaIndia
  5. 5.Division of Soil Science and Agricultural ChemistryICAR-Indian Agricultural Research InstituteNew DelhiIndia

Personalised recommendations