Advertisement

Toxicity of Nanomaterials in Agriculture and Food

  • Ryan Rienzie
  • Nadeesh M. AdassooriyaEmail author
Chapter

Abstract

Nanotechnology is revolutionizing the world with promising breakthroughs that make the human lives more comfortable, and no doubt that this would be the same in the future of agriculture and food industries as well. Besides, the world is still not fully confident about how this technology would work in long run, particularly in relation to the concerns regarding the possible toxic effects that can threaten the living either by direct or indirect entry into living cells. Together with agricultural activities, food production is one of the leading aspects. Lack of proper understanding on mechanisms that nanomaterial behave inside the living cells has directed us to re-think on incorporating them with agricultural purposes and then consumption of such nanomaterial involved products. The kinetics and toxicity of nanomaterials are unique and depending upon the extrinsic and intrinsic factors which hinder predicting their behaviour under various environments, therefore has become more complex to understand the possible impacts. In this context, this chapter aims at broadly discussing on the toxicological aspects of nanomaterials in agriculture and food systems while pointing out the future prospects of applications of nanotechnology to the same.

Keywords

Toxicity Nanomaterials Nanoparticles Ecosystem Microbial community 

References

  1. Acosta E (2009) Bioavailability of nanoparticles in nutrient and nutraceutical delivery. Curr Opin Colloid Interf Sci 14(3):15Google Scholar
  2. Adhikari T, Kundu S, Biswas AK, Tarafdar JC, Rao AC (2012) Effect of copper oxide nanoparticle on seed germination of selected crops. J Agric Sci Technol 2:815–823Google Scholar
  3. Ahlbom A, Bridges J, De Jong W (2012) Scientific committee on emerging and newly identified health risks (SCENIHR). The safety of dental amalgam and alternative dental restoration materials for patients and users, 6 May 2008Google Scholar
  4. Amist N, Singh NB, Yadav K, Singh SC, Pandey JK (2017) Comparative studies of Al3+ ions and Al2O3 nanoparticles on growth and metabolism of cabbage seedlings. J Biotechnol 254(2017):1–8PubMedCrossRefGoogle Scholar
  5. Anjum NA, Rodrigo MAM, Moulick A, Heger Z, Kopel P, Zítka O, Adam V, Lukatkin AS, Duarte AC, Pereira E, Kizek R (2016) Transport phenomena of nanoparticles in plants and animals/humans. Environ Res 151:233–243PubMedCrossRefGoogle Scholar
  6. Antisari LV, Carbone S, Gatti A, Vianello G, Nannipieri P (2014) Uptake and translocation of metals and nutrients in tomato grown in soil polluted with metal oxide (CeO2, Fe3O4, SnO2, TiO2) or metallic (Ag, Co Ni) engineered nanoparticles, Environ Sci Pollut Res. http://dx.doi.org/10.1007/s11356-014-3509-0
  7. Antisari LV, Laudicina VA, Gatti A, Carbone S, Badalucco L, Vianello G (2015) Soil microbial biomass carbon and fatty acid composition of earthworm Lumbricus rubellus after exposure to engineered nanoparticles. Biol Fertil Soils 51:261–269CrossRefGoogle Scholar
  8. Aslani F, Bagheri S, Muhd Julkapli N, Juraimi AS, Hashemi FSG, Baghdadi A (2014) Effects of engineered nanomaterials on plants growth: an overview, Sci World J 1–28CrossRefGoogle Scholar
  9. Asli S, Neumann M (2009) Colloidal suspensions of clay or titanium dioxide nanoparticles can inhibit leaf growth and transpiration via physical effects on root water transport. Plant Cell Environ 32:577–584PubMedCrossRefGoogle Scholar
  10. Atha DH, Wang H, Petersen EJ, Cleveland D, Holbrook RD, Jaruga P et al (2012) Copper oxide nanoparticle mediated DNA damage in terrestrial plant models. Environ Sci Technol 46:1819–1827.  https://doi.org/10.1021/es202660kCrossRefPubMedGoogle Scholar
  11. Balota EL, Colozzi A, Andrade DS, Dick RP (2003) Microbial biomass in soils under different tillage and crop rotation systems. Biol Fertil Soils 38:15–20CrossRefGoogle Scholar
  12. Bandyopadhyay S, Plascencia-Villa G, Mukherjee A, Rico CM, Jose-Yacaman M, Peralta-Videa JR, Gardea-Torresdey JL (2015) Comparative phytotoxicity of ZnO NPs bulk ZnO, and ionic zinc onto the alfalfa plants symbiotically associated with Sinorhizobium meliloti in soil. Sci Total Environ 515:60–69PubMedCrossRefGoogle Scholar
  13. Begum P, Fugetsu B (2012) Phytotoxicity of multi-walled carbon nanotubes on red spinach (Amaranthus tricolor L) and the role of ascorbic acid as an antioxidant. J Hazard Mater 243:212–222PubMedCrossRefGoogle Scholar
  14. Begum P, Ikhtiari R, Fugetsu B (2011) Graphene phytotoxicity in the seedling stage of cabbage, tomato, red spinach, and lettuce. Carbon 49:3907–3919.  https://doi.org/10.1016/j.carbon.2011.05.029CrossRefGoogle Scholar
  15. Begum P, Ikhtiari R, Fugetsu B, Matsuoka M, Akasaka T, Watari F (2012) Phytotoxicity of multi-walled carbon nanotubes assessed by selected plant species in the seedling stage. Appl Surf Sci 262(2012):120–124CrossRefGoogle Scholar
  16. Ben-Moshe T, Frenk S, Dror I, Minz D, Berkowitz B (2013) Effects of metal oxide nanoparticles on soil properties. Chemosphere 90(2):640–646.  https://doi.org/10.1016/j.chemosphere.2012.09.018PubMedCrossRefGoogle Scholar
  17. Bombin S, Le Febvre M, Sherwood J, Xu Y, Bao Y, Ramonell KM (2015) Developmental and reproductive effects of iron oxide nanoparticles in Arabidopsis thaliana. Int J Mol Sci 16:24174–24193PubMedPubMedCentralCrossRefGoogle Scholar
  18. Boonyanitipong P, Kositsup B, Kumar P, Baruah S, Dutta J (2011) Toxicity of ZnO and TiO2 nanoparticles on germinating rice seeds. Int J Biosci Biochem Bioinform 1:282–285Google Scholar
  19. Bouwmeester H, Dekkers S, Noordam MY, Hagens WI, Bulder AS, de Heer, ten Voorde SECG, Wijnhoven SWP, Marvin HJP, Sips AJAM (2009) Review of health safety aspects of nanotechnologies in food production, Regul Toxicol Pharmacol 53:52–62PubMedCrossRefGoogle Scholar
  20. Capaldi-Arruda SC, Silva ALD, Galazzi RM, Azevedo RA, Arruda MAZ (2015) Nanoparticles applied to plant science: a review. Talanta 131:693–705.  https://doi.org/10.1016/j.talanta.2014.08.050CrossRefGoogle Scholar
  21. Castiglione MR, Giorgetti L, Geri C, Cremonini R (2011) The effects of nano-TiO2 on seed germination, development and mitosis of root tip cells of Vicia narbonensis L. and Zea mays L. J Nanopart Res 13:2443–2449CrossRefGoogle Scholar
  22. Chai H, Yao J, Sun J, Zhang C, Liu W, Zhu M, Ceccanti B (2015) The effect of metal oxide nanoparticles on functional bacteria and metabolic profiles in agricultural soil. Bull Environ Contam Toxicol 94(4):490–505PubMedCrossRefGoogle Scholar
  23. Chen R, Ratnikova TA, Stone MB, Lin S, Lard M, Huang G, Hudson JS, Ke PC (2010) Differential uptake of carbon nanoparticles by plant and mammalian cells. Small 6:612–617PubMedCrossRefGoogle Scholar
  24. Chung H, Son Y, Yoon TK, Kim S, Kim W (2011) The effect of multi-walled carbon nanotubes on soil microbial activity. Ecotoxicol Environ Saf 74:569–575PubMedCrossRefPubMedCentralGoogle Scholar
  25. Cox A, Venkatachalam P, Sahi S, Sharma N (2017) Reprint of: silver and titanium dioxide nanoparticle toxicity in plants: a review of current research. Plant Physiol Biochem 110:33–49PubMedCrossRefGoogle Scholar
  26. De Jong WH, Hagens WI, Krystek P, Burger MC, Sips A, Geertsma RE (2008) Particle size-dependent organ distribution of gold nanoparticles after intravenous administration. Biomaterials 29:1912–1919PubMedCrossRefGoogle Scholar
  27. Demir E, Kaya N, Kaya B (2014) Genotoxic effects of zinc oxide and titanium dioxide nanoparticles on root meristem cells of Allium cepa by comet assay. Turk J Biol 38:31–39CrossRefGoogle Scholar
  28. des Rieux A, Fievez V, Garinot M, Schneider YJ, Preat V (2006) Nanoparticles as potential oral delivery systems of proteins and vaccines: a mechanistic approach. J Control Release 116:1–27Google Scholar
  29. Dietz KJ, Herth S (2011) Plant nanotoxicology. Trends Plant Sci 16:582–589PubMedCrossRefGoogle Scholar
  30. Dimkpa CO, Calder A, Britt DW, McLean JE, Anderson AJ (2011) Responses of a soil bacterium, Pseudomonas chlororaphis O6 to commercial metal oxide nanoparticles compared with responses to metal ions. Environ Pollut 159(7):1749–1756PubMedCrossRefPubMedCentralGoogle Scholar
  31. Dimkpa CO, McLean JE, Britt DW, Anderson AJ (2015) Nano-CuO and interaction with nano-ZnO or soil bacterium provide evidence for the interference of nanoparticles in metal nutrition of plants. Ecotoxicology 24:119–129PubMedCrossRefPubMedCentralGoogle Scholar
  32. Dimkpa CO, McLean JE, Latta DE, Manangon E, Britt DW, Johnson WP, Boyanov MI, Anderson AJ (2012) CuO and ZnO nanoparticles: phytotoxicity, metal speciation, and induction of oxidative stress in sand-grown wheat. J Nanopart Res 14(2012):1–15.  https://doi.org/10.1007/s11051-012-1125-9CrossRefGoogle Scholar
  33. Dinesh R, Anandaraj M, Srinivasan V, Hamza S (2012) Engineered nanoparticles in the soil and their potential implications to microbial activity. Geoderma 173–174:19–27.  https://doi.org/10.1016/j.geoderma.2011.12.018CrossRefGoogle Scholar
  34. Du WC, Sun YY, Ji R, Zhu JG, Wu JC, Guo HY (2011) TiO2 and ZnO Nanoparticles negatively affect wheat growth and soil enzyme activities in agricultural soil. J Environ Monit 13:822–828PubMedCrossRefPubMedCentralGoogle Scholar
  35. Etxeberria E, Gonzalez P, Pozueta J (2009) Evidence for two endocytic transport pathways in plant cells. Plant Sci 177:341–348CrossRefGoogle Scholar
  36. Feichtmeier NS, Walther P, Leopold K (2015) Uptake, effects, and regeneration of barley plants exposed to gold nanoparticles. Environ Sci Pollut Res 22:8549–8558CrossRefGoogle Scholar
  37. Feizi H, Moghaddam PR, Shahtahmassebi N, Fotovat A (2013) Assessment of concentrations of nano and bulk iron oxide particles on early growth of wheat (Triticum aestivum L.). Ann Rev Res Biol 3:752–761Google Scholar
  38. Feng Y, Cui X, He X, Dong G, Chen M, Wang J, Lin X (2013) The role of metal nanoparticles in influencing arbuscular mycorrhizal fungi effects on plant growth. Environ Sci Technol 47:9496–9504.  https://doi.org/10.1021/es402109nCrossRefGoogle Scholar
  39. Fierer N, Jackson RB (2006) The diversity and biogeography of soil bacterial communities. PNAS 103(3):626–631PubMedCrossRefGoogle Scholar
  40. Frazier TP, Burklew CE, Zhang BH (2014) Titanium dioxide nanoparticles affect the growth and micro RNA expression of tobacco (Nicotiana tabacum). Funct Integr Genom 14(1):75–83.  https://doi.org/10.1007/s10142-013-0341-4CrossRefGoogle Scholar
  41. Fujishima A, Rao TN, Truk DA (2000) Titanium dioxide photocatalysis. J Photochem Photobiol C Photo Chem Rev 1(1):1–21CrossRefGoogle Scholar
  42. Gajjar P, Pettee B, Britt DW, Huang W, Johnson WP, Anderson AJ (2009) Antimicrobial activities of commercial nanoparticles against an environmental soil microbe, Pseudomonas putida KT2440, J Biol Eng 3(1):9. http://dx.doi.org/10.1186/1754-1611-3-9
  43. Ge Y, Schimel JP, Holden PA (2011) Evidence for negative effects of TiO2 and ZnO nanoparticles on soil bacterial communities. Environ Sci Technol 45:1659–1664PubMedCrossRefGoogle Scholar
  44. Ghosh M, Bandyopadhyay M, Mukherjee A (2010) Genotoxicity of titanium dioxide (TiO2) nanoparticles at two trophic levels: plant and human lymphocytes. Chemosphere 81:1253–1262PubMedCrossRefGoogle Scholar
  45. Gunalan S, Sivaraj R, Rajendran V (2012) Green synthesized ZnO nanoparticles against bacterial and fungal pathogens. Prog Nat Sci Mater Int 22(6):693–700CrossRefGoogle Scholar
  46. Hagens WI, Oomen AG, de Jong WH, Cassee FR, Sips A (2007) What do we (need to) know about the kinetic properties of nanoparticles in the body? Regul Toxicol Pharmacol 49(217):229Google Scholar
  47. Hawthorne J, Musante C, Sinha SK, White JC (2012) Accumulation and Phytotoxicity of Engineered Nanoparticles to. Int J Phytorem 14(4):429–442Google Scholar
  48. Hong J, Rico CM, Zhao L, Adeleye AS, Keller AA, Peralta-Videa JR, Gardea-Torresdey GL (2015) Toxic effects of copper-based nanoparticles or compounds to lettuce (Lactuca sativa) and alfalfa (Medicago sativa). Environ Sci Process Impacts 17:177–185PubMedCrossRefPubMedCentralGoogle Scholar
  49. Horst AM, Neal AC, Mielke RE, Sislian PR, Suh WH, Mädler L, Stucky GD, Holden PA (2010) Dispersion of TiO2 nanoparticle agglomerates by Pseudomonas aeruginosa. Appl Environ Microbiol 76:7292–7298PubMedPubMedCentralCrossRefGoogle Scholar
  50. Hu L, Mao ZW, Gao CY (2009) Colloidal particles for cellular uptake and delivery. J Mater Chem 19:3108–3115CrossRefGoogle Scholar
  51. Jiang J, Oberdorster G, Biswas P (2008) Characterization of size, surface charge, and agglomeration state of nanoparticle dispersions for toxicological studies. J Nanopart Res 11:77–89CrossRefGoogle Scholar
  52. Jin L, Son Y, Yoon TK, Kang YJ, Kim W, Chung H (2013) High concentrations of single-walled carbon nanotubes lower soil enzyme activity and microbial biomass. Ecotoxicol Environ Saf 88:9–15PubMedCrossRefGoogle Scholar
  53. Johansen A, Pedersen AL, Jensen KA, Karlson U, Hansen BM, Scott-Fordsmand JJ, Winding A (2008) Effects of C60 fullerene nanoparticles on soil bacteria and protozoans. Environ Toxicol Chem 27:1895–1903.  https://doi.org/10.1897/07-375.1CrossRefPubMedGoogle Scholar
  54. Joseph S, Anawar HM, Storer P, Blackwell P, Chia C, Lin Y, Munroe P, Donne S, Horvat J, Wang J, Solaiman ZM (2015) Effects of enriched biochars containing magnetic iron nanoparticles on mycorrhizal colonisation, plant growth, nutrient uptake and soil quality improvement. Pedosphere 25(5):749–760CrossRefGoogle Scholar
  55. Judy JD, Unrine JM, Bertsch M (2011) Evidence for biomagnification of gold nanoparticles within a terrestrial food chain. Environ Sci Technol 45:776–781PubMedCrossRefGoogle Scholar
  56. Kerfahi D, Tripathi BM, Singh D, Kim H, Lee S, Lee J, Adams JM (2015) Effects of functionalized and raw multi-walled carbon nanotubes on soil bacterial community composition. PLoS ONE 10:e123042CrossRefGoogle Scholar
  57. Khare P, Sonane M, Nagar Y, Moin N, Ali S, Gupta KC, Satish A (2015) Size dependent toxicity of zinc oxide nanoparticles in soil nematode Caenorhabditis elegans. Nanotoxicology 9:423–432PubMedCrossRefGoogle Scholar
  58. Kim S, Kim J, Lee I (2011) Effects of Zn and ZnO nanoparticles and Zn2+ on soil enzyme activity and bioaccumulation of Zn in Cucumis sativus. Chem Ecol 27:49–55CrossRefGoogle Scholar
  59. Kim S, Lee S, Lee I (2012) Alteration of phytotoxicity and oxidant stress potential by metal oxide nanoparticles in Cucumis sativus. Wat Air Soil Pollut 223:2799–2806CrossRefGoogle Scholar
  60. Kim YS, Kim JS, Cho HS, Rha DS, Kim JM, Park JD, Choi BS, Lim R, Chang HK, Chung YH, Kwon IH, Jeong J, Han BS, Yu IJ (2008) Twenty eight-day oral toxicity, genotoxicity, and gender-related tissue distribution of silver nanoparticles in Spraguee Dawley rats. Inhal Toxicol 20(6):575–583PubMedCrossRefGoogle Scholar
  61. Kouhi SMM, Lahouti M, Ganjeali A, Entezari MH (2014) Comparative phytotoxicity of ZnO nanoparticles ZnO microparticles, and Zn2+ on rapeseed (Brassica napus L.): investigating a wide range of concentrations. Toxicol Environ Chem 96:861–868CrossRefGoogle Scholar
  62. Kouhi SMM, Lahouti M, Ganjeali A, Entezari MH (2015) Long-term exposure of rapeseed (Brassica napus L.) to ZnO nanoparticles: anatomical and ultrastructural responses. Environ Sci Pollut Res 22(14):10733–10743.  https://doi.org/10.1007/s11356-015-4306-0CrossRefGoogle Scholar
  63. Kumar N, Shah V, Walker VK (2011) Perturbation of an arctic soil microbial community by metal nanoparticles. J Hazard Mater 190(1–3):816–822PubMedCrossRefGoogle Scholar
  64. Larue C, Laurette J, Herlin-Boime N (2012) Accumulation, translocation and impact of TiO2 nanoparticles in wheat (Triticum aestivum spp.): influence of diameter and crystal phase. Sci Total Environ 431:197–208PubMedCrossRefGoogle Scholar
  65. Laware SL, Raskar S (2014) Effect of titanium dioxide nanoparticles on hydrolytic and antioxidant enzymes during seed germination in onion. Int J Curr Microbiol Appl Sci 3(7):749–760Google Scholar
  66. Le VN, Rui Y, Gui X, Li X, Liu S, Han Y (2014) Uptake, transport, distribution and Bio-effects of SiO2 nanoparticles in Bt-transgenic cotton. J Nanobiotechnol 12:50CrossRefGoogle Scholar
  67. Lee WM, An YJ, Yoon H, Kweon HS (2008) Toxicity and bioavailability of copper nanoparticles to the terrestrial plants mungbean (Phaseolus radiatus) and wheat (Triticum aestivum): plant agar test for water insoluble nanoparticles. Environ Toxicol Chem 27:1915–1921PubMedCrossRefGoogle Scholar
  68. Lee WM, Kwak JI, An YJ (2012) Effect of silver nanoparticles in crop plants Phaseolus radiatus and Sorghum bicolor: media effect on phytotoxicity. Chemosphere 86:491–499PubMedCrossRefGoogle Scholar
  69. Li X, Gui X, Rui Y, Ji W, Yu Z, Peng S (2014) Bt-transgenic cotton is more sensitive to CeO2 nanoparticles than its parental non-transgenic cotton. J Hazard Mater 274:173–180PubMedCrossRefGoogle Scholar
  70. Li Y, Zheng J, Xiao H, McClements DJ (2012) Nanoemulsion-based delivery systems for poorly water-soluble bioactive compounds: influence of formulation parameters on polymethoxyflavone crystallization. Food Hydrocoll 27:517–528PubMedCrossRefGoogle Scholar
  71. Lin D, Xing B (2007) Phytotoxicity of nanoparticles: inhibition of seed germination and root growth. Environ Pollut 150:243–250PubMedCrossRefGoogle Scholar
  72. Lin D, Xing B (2008) Root uptake and phytotoxicity of ZnO nanoparticles. Environ Sci Technol 42:5580–5585PubMedCrossRefGoogle Scholar
  73. Lin S, Reppert J, Hu Q, Hudson JS, Reid ML, Ratnikova TA, Rao AM, Luo H, Ke PC (2009) Uptake, translocation, and transmission of carbon nanomaterials in rice plants. Small 5(10):1128–1132PubMedGoogle Scholar
  74. Lopez-Moreno ML, Cedeno-Mattei Y, Bailon-Ruizf SJ, Vazquez-Nunez E, Hernandez-Viezcas JA, Perales-Perez OJ, De La Rosa G, Peralta-Videa JR, Gardea-Torresdey JL (2018) Environmental behavior of coated NMs: physicochemical aspects and plant interactions. J Hazard Mater 347:196–217PubMedCrossRefGoogle Scholar
  75. Lopez-Moreno ML, De La Rosa G, Hernandez-Viezcas JA, Peralta-Videa JR, Gardea-Torresdey JL (2010) X-ray absorption spectroscopy (XAS) corroboration of the uptake and storage of CeO2 nanoparticles and assessment of their differential toxicity in four edible plant species. J Agric Food Chem 58:3689–3693PubMedPubMedCentralCrossRefGoogle Scholar
  76. Magdolenova Z, Collins AR, Kumar A, Dhawan A, Stone V, Dusinska M (2014) Mechanisms of genotoxicity. Rev Recent In vitro In vivo Stud Eng Nanopart Nanotoxicol 8:233–278Google Scholar
  77. Mazumdar H, Ahmed GU (2011) Phytotoxicity effect of silver nanoparticles on Oryza sativa. Int J Chem Technol Res 3:1494–1500Google Scholar
  78. McClements DJ (2011) Edible nanoemulsions: fabrication, properties, and functional performance. Soft Matter 7:2297–2316CrossRefGoogle Scholar
  79. McClements DJ, Decker EA, Weiss J (2007) Emulsion-based delivery systems for lipophilic bioactive components. J Food Sci 72:109–124CrossRefGoogle Scholar
  80. McClements DJ, Xiao H (2012) Potential biological fate of ingested nanoemulsions: influence of particle characteristics. Food Funct 3:202–220PubMedCrossRefGoogle Scholar
  81. Medina-Velo IA, Barrios AC, Zuverza-Mena N, Hernandez-Viezcas JA, Chang CH, Ji X, Zink JI, Peralta-Videa JR, Gardea-Torresdey JL (2017) Comparison of the effects of commercial coated and uncoated ZnO NMs and Zn compounds in kidney bean (Phaseolus vulgaris) plants. J Hazard Mater 332:214–222PubMedCrossRefGoogle Scholar
  82. Mirzajani F, Askari H, Hamzelou S, Farzaneh M, Ghassempour (2013)  Effect of silver nanoparticles on Oryza sativa L. and its rhizosphere bacteria. Ecotoxicol Environ Saf 88:48–54PubMedCrossRefGoogle Scholar
  83. Mukherjee A, Majumdar S, Servin AD, Pagano L, Dhankher OP, White JC (2016) Carbon nanomaterials in agriculture: a critical review. Front Plant Sci 7:172.  https://doi.org/10.3389/fpls.2016.00172CrossRefPubMedPubMedCentralGoogle Scholar
  84. Nagaonkar D, Shende S, Rai M (2015) Biosynthesis of copper nanoparticles and its effect on actively dividing cells of mitosis in Allium cepa. Biotechnol Prog 31(2):557–565.  https://doi.org/10.1002/btpr.2040CrossRefPubMedGoogle Scholar
  85. Nair PMG, Chung IM (2014a) A mechanistic study on the toxic effect of copper oxide nanoparticles in soybean (Glycine max L.) root development and lignification of root cells. Biol Trace Elem Res 162:342–352PubMedCrossRefGoogle Scholar
  86. Nair PMG, Chung IM (2014b) Physiological and molecular level effects of silver nanoparticles exposure in rice (Oryza sativa L.) seedlings. Chemosphere 112:105–113PubMedCrossRefGoogle Scholar
  87. Nair PMG, Chung IM (2015a) Changes in the growth, redox status and expression of oxidative stress related genes in chickpea (Cicer arietinum L.) in response to copper oxide nanoparticle exposure. J Plant Growth Regul 34(2):350–361. http://dx.doi.org/10.1007/s00344-014-9468-3CrossRefGoogle Scholar
  88. Nair PMG, Chung IM (2015b) Study on the correlation between copper oxide nanoparticles induced growth suppression and enhanced lignification in Indian mustard (Brassica juncea L.). Ecotoxicol Environ Saf 113:302–313PubMedCrossRefGoogle Scholar
  89. Pakrashi S, Jain N, Dalai S, Jayakumar J, Chandrasekaran PT, Raichur AM, Chandrasekaran N, Mukherjee A (2014) In vivo genotoxicity assessment of titanium dioxide nanoparticles by Allium cepa root tip assay at high exposure concentrations. PLoS One e87789Google Scholar
  90. Pallavi CM, Mehta Srivastava R, Arora S, Sharma AK (2016) Impact assessment of silver nanoparticles on plant growth and soil bacterial diversity. Biotech 6:254Google Scholar
  91. Pittol M, Tomacheski D, Simoes DN, Ribeiro VF, Santana RMC (2017) Macroscopic effects of silver nanoparticles and titanium dioxide on edible plant growth. Environ Nanotechnol Monitor Manage 8:127–133CrossRefGoogle Scholar
  92. Pokhrel LR, Dubey B (2013) Evaluation of developmental responses of two crop plants exposed to silver and zinc oxide nanoparticles. Sci Total Environ 452:321–332PubMedCrossRefGoogle Scholar
  93. Rafique R, Zahra Z, Virk N, Shahid M, Pinelli E, Park TJ, Kallerhoff J, Muhammad A (2018) Dose-dependent physiological responses of Triticum aestivum L. to soil applied TiO2 nanoparticles: alterations in chlorophyll content, H2O2 production, and genotoxicity. Agric Ecosyst Environ 255:95–101.  https://doi.org/10.1016/j.agee.2017.12.010CrossRefGoogle Scholar
  94. Rajput VD, Minkina TM, Behal A, Sushkova SN, Mandzhieva S, Singh R, Gorovtsov A, Tsitsuashvili VS, Purvis WO, Ghazaryan KA, Movsesyan HS (2017) Effects of zinc-oxide nanoparticles on soil, plants, animals and soil organisms: a review. Environ Nanotechnol Monitor Manage 9:76–84CrossRefGoogle Scholar
  95. Raliya R, Nair R, Chavalmane S, Wangab W, Biswas P (2015) Mechanistic evaluation of translocation and physiological impact of titanium dioxide and zinc oxide nanoparticles on the tomato (Solanum lycopersicum L.) plant. Metallomics 7(12):1584–1594PubMedCrossRefGoogle Scholar
  96. Rao S, Shekhawat GS (2014) Toxicity of ZnO engineered nanoparticles and evaluation of their effect on growth, metabolism and tissue specific accumulation in Brassica juncea. J Environ Chem Eng 2:105–114CrossRefGoogle Scholar
  97. Rashid MI, Shahzad T, Shahid M, Ismail IM, Shah GM, Almeelbi T (2017) Zinc oxide nanoparticles affect carbon and nitrogen mineralization of Phoenix dactylifera leaf litter in a sandy soil. J Hazard Mater 324:298–305PubMedCrossRefGoogle Scholar
  98. Raskar SV, Laware SL (2014) Effect of zinc oxide nanoparticles on cytology and seed germination in onion. Int J Curr Microbiol App Sci 3:467–473Google Scholar
  99. Rawat S, Pullagurala VLR, Hernandez-Molina M, Sun Y, Niu G, Hernandez-Viezcas JA, Peralta-Videa JR, Gardea-Torresdey JL (2018) Impacts of copper oxide nanoparticles on bell pepper (Capsicum annum L.) plants: a full life cycle study. Environ Sci Nano 5:83–95.  https://doi.org/10.1039/C7EN00697GCrossRefGoogle Scholar
  100. Read DS, Matzke M, Gweon HS, Newbold LK, Heggelund L, Ortiz MD, Lahive E, Spurgeon D, Svendsen C (2016) Environ Sci Pollut Res Int 23(5):4120–4128PubMedCrossRefGoogle Scholar
  101. Ren W, Ren G, Teng Y, Li Z, Li L (2015) Time-dependent effect of graphene on the structure, abundance, and function of the soil bacterial community. J Hazard Mater 297:286–294PubMedCrossRefGoogle Scholar
  102. Rico CM, Majumdar S, Duarte-Gardea M, Peralta-Videa JR, Gardea-Torresdey JL (2011) Interaction of nanoparticles with edible plants and their possible implications in the food chain. J Agric Food Chem 59:3485–3498PubMedPubMedCentralCrossRefGoogle Scholar
  103. Rico CM, Morales MI, Barrios AC, McCreary R, Hong J, Lee WY, Nunez J, Peralta-Videa JR, Gardea-Torresdey JL (2013b) Effect of cerium oxide nanoparticles on the quality of rice (Oryza sativa L.) grains. J Agric Food Chem 61:11278–11285.  https://doi.org/10.1021/jf404046vPubMedCrossRefGoogle Scholar
  104. Rico CM, Morales MI, McCreary R, Castillo-Michel H, Barrios AC, Hong J, Tafoya A, Lee W-Y, Varela-Ramirez A, Peralta-Videa JR, Gardea-Torresdey JL (2013a) Cerium oxide nanoparticles modify the antioxidative stress enzyme activities and macromolecule composition in rice seedlings. Environ Sci Technol 47:14110–14118.  https://doi.org/10.1021/es4033887CrossRefPubMedGoogle Scholar
  105. Rizwan M, Ali S, Qayyum MF, Ok YS, Adrees M, Ibrahim M, Zia-ur-Rehman M, Farid M, Abbas F (2017) Effect of metal and metal oxide nanoparticles on growth and physiology of globally important food crops: a critical review. J Hazard Mater 322:2–16PubMedCrossRefGoogle Scholar
  106. Rodrigues DF, Jaisi DP, Elimelech M (2013) Toxicity of functionalized single-walled carbon nanotubes on soil microbial communities: implications for nutrient cycling in soil. Environ Sci Technol 47:625–633.  https://doi.org/10.1021/es304002qCrossRefPubMedGoogle Scholar
  107. Ruttkay-Nedecky B, Krystofova O, Nejdl L, Adam V (2017) Nanoparticles based on essential metals and their phytotoxicity. J Nanobiotechnol 26(15):33.  https://doi.org/10.1186/s12951-017-0268-3CrossRefGoogle Scholar
  108. Shaw AK, Ghosh S, Kalaji HM, Bosa K, Brestic M, Zivcak M, Hossain Z (2014) Nano-CuO stress induced modulation of antioxidative defense and photosynthetic performance of Syrian barley (Hordeum vulgare L.). Environ Exp Bot 102:37–47CrossRefGoogle Scholar
  109. Shen CX, Zhang QF, Li J, Bi FC, Yao N (2010) Induction of programmed cell death in Arabidopsis and rice by single-wall carbon nanotubes. Am J Bot 97(10):1602–1609PubMedCrossRefGoogle Scholar
  110. Siddiqi KS, Husen A (2017) Plant response to engineered metal oxide nanoparticles. Nanoscale Res Lett 12:92.  https://doi.org/10.1186/s11671-017-1861-yCrossRefPubMedPubMedCentralGoogle Scholar
  111. Simonin M, Richaume A (2015) Impact of engineered nanoparticles on the activity abundance, and diversity of soil microbial communities: a review. Environ Sci Pollut Res 22:13710–13723CrossRefGoogle Scholar
  112. Song U, Jun H, Waldman B, Roh J, Kim Y, Yi J, Lee EJ (2013a) Functional analyses of nanoparticle toxicity: a comparative study of the effects of TiO2 and Ag on tomatoes (Lycopersicon esculentum). Ecotoxicol Environ Saf 93:60–67PubMedCrossRefGoogle Scholar
  113. Song U, Shin M, Lee G, Roh J, Kim Y, Lee EJ (2013b) Functional analysis of TiO2 nanoparticle toxicity in three plant species. Biol Trace Elem Res 155(1):93–103.  https://doi.org/10.1007/s12011-013-9765-xCrossRefPubMedGoogle Scholar
  114. Stampoulis D, Sinha SK, White JC (2009) Assay-dependent phytotoxicity of nanoparticles to plants. Environ Sci Technol 43:9473–9479PubMedCrossRefGoogle Scholar
  115. Tan WJ, Du WC, Barrios AC, Jr Armendariz, Zuverza-Mena R, Ji N, Chang ZX, Zink CH, Hernandez-Viezcas JA, Peralta-Videa JR, GardeaTorresdey JL (2017) Surface coating changes the physiological and biochemical impacts of nano-TiO2 in basil (Ocimum basilicum) plants. Environ Pollut 222:64–72PubMedCrossRefGoogle Scholar
  116. Thakur MP, Milcu A, Manning P, Niklaus PA, Roscher C, Power S, Reich PB, Scheu S, Tilman D, Ai F, Guo H, Ji R, Pierce S, Ramirez NG, Richter AN, Steinauer K, Strecker T, Vogel A, Eisenhauer N (2015) Plant diversity drives soil microbial biomass carbon in grasslands irrespective of global environmental change factors. Glob Change Biol 21:4076–4085CrossRefGoogle Scholar
  117. Tong Z, Bischoff M, Nies LF, Carroll NJ, Applegate B, Turco RF (2016) Influence of fullerene (C-60) on soil bacterial communities: aqueous aggregate size and solvent co-introduction effects. Sci Rep 6Google Scholar
  118. Tripathi DK, Singh S, Singh S, Srivastava PK, Singh VP, Singh S, Prasad SM, Singh PK, Dubey NK, Pandey AC, Chauhan DK (2017) Nitric oxide alleviates silver nanoparticles (AgNps)-induced phytotoxicity in Pisum sativum seedlings. Plant Physiol Biochemi 110:167–177CrossRefGoogle Scholar
  119. Trujillo-Reyes J, Majumdar S, Botez CE, Peralta-Videa JR, Gardea-Torresdey JL (2014) Exposure studies of core-shell Fe/Fe3O4and Cu/CuO NPs to lettuce (Lactuca sativa) plants: are they a potential physiological and nutritional hazard. J Hazard Mater 267:255–263PubMedCrossRefGoogle Scholar
  120. Vannini C, Domingo G, Onelli E, De Mattia F, Bruni I, Marsoni M, Bracale M (2014) Phytotoxic and genotoxic effects of silver nanoparticles exposure on germinating wheat seedlings. J Plant Physiol 171:1142–1148PubMedCrossRefGoogle Scholar
  121. Wang Z, Xie X, Zhao J, Liu X, Feng W, White JC, Xing B (2012) Xylem-and phloem-based transport of CuO nanoparticles in maize (Zea mays L.). Environ Sci Technol 46:4434–4441PubMedCrossRefGoogle Scholar
  122. Wu B, Zhu L, Le XC (2017) Metabolomics analysis of TiO2 nanoparticles induced toxicological effects on rice (Oryza sativa L.). Environ Pollut 230:302–310.  https://doi.org/10.1016/j.envpol.2017.06.062CrossRefPubMedGoogle Scholar
  123. Xu C, Peng C, Sun L, Zhang S, Huang H, Chen Y, Shi J (2015) Distinctive effects of TiO2 and CuO nanoparticles on soil microbes and their community structures in flooded paddy soil. Soil Biol Biochem 86:24–33CrossRefGoogle Scholar
  124. Yemmireddy VK, Hung YC (2015) Effect of binder on the physical stability and bactericidal property of titanium dioxide (TiO2) nanocoatings on food contact surfaces. Food Control 57:82–88CrossRefGoogle Scholar
  125. Yoon SJ, Kwak JI, Lee WM, Holden PA, An YJ (2014) Zinc oxide nanoparticles delay soybean development: a standard soil microcosm study. Ecotoxicol Environ Saf 100:131–137PubMedCrossRefGoogle Scholar
  126. Zhai G, Gutowski SM, Walters KS, Yan B, Schnoor JL (2015) Charge, size, and cellular selectivity for multiwall carbon nanotubes by maize and soybean, Environ Sci Technol 49:7380–7390. http://dx.doi.org/10.1021/acsest.5b01145CrossRefGoogle Scholar
  127. Zhang R, Zhang H, Tu C, Hu X, Li L, Luo Y, Christie P (2015) Phytotoxicity of ZnO nanoparticles and the released Zn (II) ion to corn (Zea mays L.) and cucumber (Cucumis sativus L.) during germination. Environ Sci Pollut Res 22(14):11109–11117. http://dx.doi.org/10.1007/s11356-015-4325-xPubMedCrossRefGoogle Scholar
  128. Zhao L, Peralta-Videa JR, Ren M, Varela-Ramirez A, Li C, Hernandez-Viezcas JA, Aguilera RJ, Gardea-Torresdey JL (2012a) Transport of Zn in a sandy loam soil treated with ZnO NPs and uptake by corn plants: electron microprobe and confocal microscopy studies. Chem Eng J 184:1–8CrossRefGoogle Scholar
  129. Zhao L, Peralta-Videa JR, Varela-Ramirez A, Castillo-Michel H, Li C, Zhang J, Aguilera RJ, Keller AA, Gardea-Torresdey JL (2012b) Effect of surface coating and organic matter on the uptake of CeO2 NPs by corn plants grown in soil: Insight into the uptake mechanism. J Hazard Mater 225–226:131–138PubMedCrossRefGoogle Scholar
  130. Zhao L, Peralta-Videa JR, Rico CM, Hernandez-Viezcas JA, Sun Y, Niu G, Servin A, Nunez JE, Duarte-Gardea M, Gardea-Torresdey JL (2014) CeO2 and ZnO nanoparticles change the nutritional qualities of cucumber (Cucumis sativus). J Agric Food Chem 62(13):2752–2759PubMedCrossRefGoogle Scholar
  131. Zhou D, Jin S, Li L, Wang Y, Weng N (2011) Quantifying the adsorption and uptake of CuO nanoparticles by wheat root based on chemical extractions. J Environ Sci 23:1852–1857CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Faculty of AgricultureUniversity of PeradeniyaPeradeniyaSri Lanka
  2. 2.Faculty of Applied ScienceUniversity of Sri JayewardenepuraNugegodaSri Lanka

Personalised recommendations