On Standard Young Tableaux of Bounded Height

  • M. J. MishnaEmail author
Part of the Association for Women in Mathematics Series book series (AWMS, volume 16)


We survey some recent works on standard Young tableaux of bounded height. We focus on consequences resulting from numerous bijections to lattice walks in Weyl chambers.



The author is grateful to MSRI for travel support to participate in the 2017 AWM session. This expository work was inspired by that meeting. I am grateful for the patience and wisdom of the anonymous referees. The author’s research is also partially funded by NSERC Discovery Grant RGPIN-04157.


  1. 1.
    Adin, R., & Roichman, Y. (2015). Standard Young tableaux. Handbook of Enumerative Combinatorics (pp. 895–974)., Discrete Mathematics and its Applications Boca Raton: CRC Press.CrossRefGoogle Scholar
  2. 2.
    Bergeron, F., & Gascon, F. (2000). Counting Young tableaux of bounded height. J. Integer Seq., 3(2), 3.MathSciNetzbMATHGoogle Scholar
  3. 3.
    Bergeron, F., Favreau, L., & Krob, D. (1995). Conjectures on the enumeration of tableaux of bounded height. Discret. Math., 139(1–3), 463–468.MathSciNetCrossRefGoogle Scholar
  4. 4.
    A. Bostan, P. Lairez, B. Salvy, Creative telescoping for rational functions using the Griffiths-Dwork method, in ISSAC 2013—Proceedings of the 38th International Symposium on Symbolic and Algebraic Computation, (ACM, New York, 2013), pp. 93–100Google Scholar
  5. 5.
    Bostan, A., Lairez, P., & Salvy, B. (2017). Multiple binomial sums. J. Symb. Comput., 80(part 2), 351–386.MathSciNetCrossRefGoogle Scholar
  6. 6.
    M. Bousquet-Mélou, M. Mishna, Walks with small steps in the quarter plane, in Algorithmic Probability and Combinatorics, vol. 520, Contemporary Mathematics (American Mathematical Society, Providence, 2010), pp. 1–39Google Scholar
  7. 7.
    Bousquet-Mélou, M. (2011). Counting permutations with no long monotone subsequence via generating trees and the kernel method. J. Algebr. Comb., 33(4), 571–608.MathSciNetCrossRefGoogle Scholar
  8. 8.
    Brown, A. A. H., van Willigenburg, S., & Zabrocki, M. (2010). Expressions for Catalan Kronecker products. Pac. J. Math., 248(1), 31–48.MathSciNetCrossRefGoogle Scholar
  9. 9.
    S. Burrill, S. Melczer, M. Mishna, A Baxter class of a different kind, and other bijective results using tableau sequences ending with a row shape, in Proceedings of FPSAC 2015, Discrete Mathematics and Theoretical Computer Science (Association of Discrete Mathematics & Theoretical Computer Science, Nancy, 2015), pp. 369–380Google Scholar
  10. 10.
    Burrill, S., Courtiel, J., Fusy, E., Melczer, S., & Mishna, M. (2016). Tableau sequences, open diagrams, and Baxter families. Eur. J. Comb., 58, 144–165.MathSciNetCrossRefGoogle Scholar
  11. 11.
    Chen, W. Y. C., Deng, E. Y. P., Du, R. R. X., Stanley, R. P., & Yan, C. H. (2007). Crossings and nestings of matchings and partitions. Trans. Am. Math. Soc., 359(4), 1555–1575.MathSciNetCrossRefGoogle Scholar
  12. 12.
    J. Courtiel, E. Fusy, M. Lepoutre, M. Mishna, Bijections for Weyl chamber walks ending on an axis, using arc diagrams and Schnyder woods. Eur. J. Comb. 69, 126–142 (2018)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Denisov, D., & Wachtel, V. (2015). Random walks in cones. Ann. Probab., 43(3), 992–1044.MathSciNetCrossRefGoogle Scholar
  14. 14.
    Fomin, S. (1995). Schensted algorithms for dual graded graphs. J. Algebr. Comb., 4(1), 5–45.MathSciNetCrossRefGoogle Scholar
  15. 15.
    I. Gessel, J. Weinstein, H.S. Wilf, Lattice walks in \({{\mathbf{Z}}}^d\) and permutations with no long ascending subsequences. Electron. J. Comb. 5, Research Paper 2, 11 (1998)Google Scholar
  16. 16.
    Gessel, I. M. (1990). Symmetric functions and P-recursiveness. J. Comb. Theory Ser. A, 53(2), 257–285.MathSciNetCrossRefGoogle Scholar
  17. 17.
    Gessel, I. M., & Zeilberger, D. (1992). Random walk in a Weyl chamber. Proc. Am. Math. Soc., 115(1), 27–31.MathSciNetCrossRefGoogle Scholar
  18. 18.
    J.B. Gil, P.R.W. McNamara, J.O. Tirrell, M.D. Weiner, From Dyck paths to standard Young tableaux (2017), arXiv:1708.00513
  19. 19.
    B. Gordon, Notes on plane partitions IV. Multirowed partitions with strict decrease along columns, in Combinatorics, Proceedings of symposia in pure mathematics, University of California, Los Angeles, California, 1968, vol. XIX, (American Mathematical Society, Providence, 1971), pp. 91–100Google Scholar
  20. 20.
    Gordon, B., & Houten, L. (1968). Notes on plane partitions I, II. J. Comb. Theory, 4(72–80), 81–99.MathSciNetCrossRefGoogle Scholar
  21. 21.
    Gordon, B., & Houten, L. (1969). Notes on plane partitions III. Duke Math. J., 36, 801–824.MathSciNetCrossRefGoogle Scholar
  22. 22.
    Goulden, I. P., & Jackson, D. M. (1983). Combinatorial Enumeration. New York: A Wiley-Interscience Publication, Wiley. With a foreword by Gian-Carlo Rota, Wiley-Interscience Series in Discrete Mathematics.zbMATHGoogle Scholar
  23. 23.
    Gouyou-Beauchamps, D. (1989). Standard Young tableaux of height \(4\) and \(5\). Eur. J. Comb., 10(1), 69–82.MathSciNetCrossRefGoogle Scholar
  24. 24.
    D.J. Grabiner, Asymptotics for the distributions of subtableaux in Young and up-down tableaux. Electron. J. Comb. 11(2), Research Paper 29, 22 (2004/2006)Google Scholar
  25. 25.
    Grabiner, D. J., & Magyar, P. (1993). Random walks in Weyl chambers and the decomposition of tensor powers. J. Algebr. Comb., 2(3), 239–260.MathSciNetCrossRefGoogle Scholar
  26. 26.
    Krattenthaler, C. (2016). Bijections between oscillating tableaux and (semi)standard tableaux via growth diagrams. J. Comb. Theory Ser. A, 144, 277–291.MathSciNetCrossRefGoogle Scholar
  27. 27.
    Lipshitz, L. (1988). The diagonal of a \(D\)-finite power series is \(D\)-finite. J. Algebra, 113(2), 373–378.MathSciNetCrossRefGoogle Scholar
  28. 28.
    S. Okada, Pieri rules for classical groups and equinumeration between generalized oscillating tableaux and semistandard tableaux. Electron. J. Comb. 23(4), Paper 4.43, 27 (2016)Google Scholar
  29. 29.
    Regev, A. (1981). Asymptotic values for degrees associated with strips of young diagrams. Adv. Math., 41(2), 115–136.MathSciNetCrossRefGoogle Scholar
  30. 30.
    Sagan, B. E. (1990). The ubiquitous Young tableau. Invariant Theory and Tableaux (Minneapolis, MN, 1988) (Vol. 19, pp. 262–298)., The IMA Volumes in Mathematics and its Applications New York: Springer.Google Scholar
  31. 31.
    Sagan, B. E. (2001). The Symmetric Group (2nd ed., Vol. 203)., Graduate Texts in Mathematics New York: Springer. Representations, combinatorial algorithms, and aymmetric functions.CrossRefGoogle Scholar
  32. 32.
    Sen-Peng, E. (2010). Skew-standard tableaux with three rows. Adv. Appl. Math., 45(4), 463–469.MathSciNetCrossRefGoogle Scholar
  33. 33.
    Sen-Peng, E., Tung-Shan, F., Hou, J. T., & Hsu, T.-W. (2013). Standard Young tableaux and colored Motzkin paths. J. Comb. Theory Ser. B, 120(7), 1786–1803.MathSciNetCrossRefGoogle Scholar
  34. 34.
    R.P. Stanley, Increasing and decreasing subsequences and their variants, in International Congress of Mathematicians, vol. I (European Mathematical Society, Zürich, 2007), pp. 545–579Google Scholar
  35. 35.
    Stanley, R. P. (1980). Differentiably finite power series. Eur. J. Comb., 1(2), 175–188.MathSciNetCrossRefGoogle Scholar
  36. 36.
    Sundaram, S. (1990). The Cauchy identity for \({\text{Sp}}(2n)\). J. Comb. Theory Ser. A, 53(2), 209–238.Google Scholar
  37. 37.
    Tewari, V. V. (2015). Kronecker coefficients for some near-rectangular partitions. J. Algebra, 429, 287–317.MathSciNetCrossRefGoogle Scholar
  38. 38.
    Viennot, G. (1978). Une forme géométrique de la correspondance de robinson-schensted. In D. Foata (Ed.), Combinatoire et repreésentation du groupe symétrique (Vol. 579, pp. 29–58)., Lecture Notes in Mathematics Berlin: Springer.CrossRefGoogle Scholar
  39. 39.
    H.S. Wilf, The computer-aided discovery of a theorem about Young tableaux. J. Symb. Comput. 20(5–6), 731–735 (1995). Symbolic computation in combinatorics \(\Delta _1\) (Ithaca, NY, 1993)Google Scholar
  40. 40.
    Wilf, H. S. (1992). Ascending subsequences of permutations and the shapes of tableaux. J. Comb. Theory Ser. A, 60(1), 155–157.MathSciNetCrossRefGoogle Scholar
  41. 41.
    Wilson, M. C., & Pemantle, R. (2013). Analytic Combinatorics in Several Variables., Cambridge Studies in Advanced Mathematics Cambridge: Cambridge University Press.zbMATHGoogle Scholar
  42. 42.
    Xin, G. (2010). Determinant formulas relating to tableaux of bounded height. Adv. Appl. Math., 45(2), 197–211.MathSciNetCrossRefGoogle Scholar
  43. 43.
    D. Zeilberger, The number of ways of walking in \(x_1 \ge \dots \ge x_k \ge 0\) for \(n\) days, starting and ending at the origin, where at each day you may either stay in place or move one unit in any direction, equals the number of \(n\)-cell standard young tableaux with \(\le 2k+1\) rows (2007).

Copyright information

© The Author(s) and the Association for Women in Mathematics 2019

Authors and Affiliations

  1. 1.Department of MathematicsSimon Fraser UniversityBurnabyCanada

Personalised recommendations