Advertisement

Recent Trends in Quasisymmetric Functions

  • Sarah K. MasonEmail author
Chapter
Part of the Association for Women in Mathematics Series book series (AWMS, volume 16)

Abstract

This article serves as an introduction to several recent developments in the study of quasisymmetric functions. The focus of this survey is on connections between quasisymmetric functions and the combinatorial Hopf algebra of noncommutative symmetric functions, appearances of quasisymmetric functions within the theory of Macdonald polynomials, and analogues of symmetric functions. Topics include the significance of quasisymmetric functions in representation theory (such as representations of the 0-Hecke algebra), recently discovered bases (including analogues of well-studied symmetric function bases), and applications to open problems in symmetric function theory.

Notes

Acknowledgements

I am very grateful to Hélène Barcelo, Gizem Karaali, and Rosa Orellana for inviting me to produce this chapter. I would also like to thank Ed Allen, Susanna Fishel, Josh Hallam, Jim Haglund, and John Shareshian for helpful feedback along the way. Finally, I greatly appreciate the insightful comments from a diligent anonymous referee.

References

  1. 1.
    Aguiar, M., Bergeron, N., & Sottile, F. (2006). Combinatorial Hopf algebras and generalized Dehn-Sommerville relations. Compos. Math., 142(1), 1–30.MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    P. Alexandersson, G. Panova, LLT polynomials, chromatic quasisymmetric functions and graphs with cycles. arXiv:1705.10353
  3. 3.
    E.E. Allen, J. Hallam, S.K. Mason, Dual immaculate quasisymmetric functions expand positively into Young quasisymmetric Schur functions (2016), arXiv:1606.03519
  4. 4.
    S. Assaf, D. Searles, Kohnert tableaux and a lifting of quasi-Schur functions (2016), arXiv:1609.03507
  5. 5.
    Assaf, S., & Searles, D. (2017). Schubert polynomials, slide polynomials, Stanley symmetric functions and quasi-Yamanouchi pipe dreams. Adv. Math., 306, 89–122.MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    S.H. Assaf, Dual equivalence graphs, ribbon tableaux and Macdonald polynomials. ProQuest LLC, Ann Arbor, MI, 2007. Thesis (Ph.D.)-University of California, Berkeley (2007)Google Scholar
  7. 7.
    Assaf, S. H. (2015). Dual equivalence graphs I: a new paradigm for Schur positivity. Forum Math. Sigma, 3: e12, 33.MathSciNetzbMATHGoogle Scholar
  8. 8.
    Aval, J.-C., & Bergeron, N. (2003). Catalan paths and quasi-symmetric functions. Proc. Am. Math. Soc., 131(4), 1053–1062.MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Aval, J.-C., Bergeron, F., & Bergeron, N. (2004). Ideals of quasi-symmetric functions and super-covariant polynomials for \(\mathscr {S}_n\). Adv. Math., 181(2), 353–367.MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Baker, A., & Richter, B. (2008). Quasisymmetric functions from a topological point of view. Math. Scand., 103(2), 208–242.MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    C. Ballantine, Z. Daugherty, A. Hicks, S. Mason, E. Niese, Quasisymmetric power sums (2017), arXiv:1710.11613
  12. 12.
    Berg, C., Bergeron, N., Saliola, F., Serrano, L., & Zabrocki, M. (2014). A lift of the Schur and Hall-Littlewood bases to non-commutative symmetric functions. Can. J. Math., 66(3), 525–565.MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Berg, C., Bergeron, N., Saliola, F., Serrano, L., & Zabrocki, M. (2015). Indecomposable modules for the dual immaculate basis of quasi-symmetric functions. Proc. Am. Math. Soc., 143(3), 991–1000.MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    F. Bergeron, Algebraic Combinatorics and Coinvariant Spaces. CMS Treatises in Mathematics. Canadian Mathematical Society, Ottawa, ON; A K Peters, Ltd., Wellesley, MA, 2009Google Scholar
  15. 15.
    Bergeron, N., & Billey, S. (1993). RC-graphs and Schubert polynomials. Exp. Math., 2(4), 257–269.MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    N. Bergeron, S. Mykytiuk, F. Sottile, S. van Willigenburg, Shifted quasi-symmetric functions and the Hopf algebra of peak functions. Discret. Math. 246(1–3), 57–66 (2002) (Formal power series and algebraic combinatorics (Barcelona, 1999))MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    N. Bergeron, S. Mykytiuk, F. Sottile, S. van Willigenburg, Noncommutative Pieri operators on posets. J. Comb. Theory Ser. A 91(1–2), 84–110 (2000) (In memory of Gian-Carlo Rota)MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Bergeron, N., Sánchez-Ortega, J., & Zabrocki, M. (2016). The Pieri rule for dual immaculate quasi-symmetric functions. Ann. Comb., 20(2), 283–300.MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Billera, L. J., & Liu, N. (2000). Noncommutative enumeration in graded posets. J. Algebr. Comb., 12(1), 7–24.MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    Billera, L. J., Hsiao, S. K., & van Willigenburg, S. (2003). Peak quasisymmetric functions and Eulerian enumeration. Adv. Math., 176(2), 248–276.MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    Billey, S. C., Jockusch, W., & Stanley, R. P. (1993). Some combinatorial properties of Schubert polynomials. J. Algebr. Comb., 2(4), 345–374.MathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    P. Brosnan, T.Y. Chow, Unit interval orders and the dot action on the cohomology of regular semisimple Hessenberg varieties (2015), arXiv:1511.00773
  23. 23.
    Carter, R. W. (1986). Representation theory of the \(0\)-Hecke algebra. J. Algebra, 104(1), 89–103.MathSciNetzbMATHCrossRefGoogle Scholar
  24. 24.
    Cherednik, I. (1995). Nonsymmetric Macdonald polynomials. Int. Math. Res. Not., 10, 483–515.MathSciNetzbMATHCrossRefGoogle Scholar
  25. 25.
    C.-O. Chow, Noncommutative symmetric functions of type B. ProQuest LLC, Ann Arbor, MI, 2001. Thesis (Ph.D.)–Massachusetts Institute of TechnologyGoogle Scholar
  26. 26.
    S. Clearman, M. Hyatt, B. Shelton, M. Skandera, Evaluations of Hecke algebra traces at Kazhdan-Lusztig basis elements. Electron. J. Comb. 23(2), Paper 2.7, 56 (2016)Google Scholar
  27. 27.
    S. Dahlberg, A. Foley, S. van Willigenburg, Resolving Stanley’s e-positivity of claw-contractible-free graphs (2017), arXiv:1703.05770
  28. 28.
    M. Demazure, Une nouvelle formule des caractères. Bull. Sci. Math. (2) 98(3), 163–172 (1974)Google Scholar
  29. 29.
    Derksen, H. (2009). Symmetric and quasi-symmetric functions associated to polymatroids. J. Algebr. Comb., 30(1), 43–86.MathSciNetzbMATHCrossRefGoogle Scholar
  30. 30.
    Ditters, E. J. (1972). Curves and formal (co)groups. Invent. Math., 17, 1–20.MathSciNetzbMATHCrossRefGoogle Scholar
  31. 31.
    G. Duchamp, D. Krob, B. Leclerc, J.-Y. Thibon, Fonctions quasi-symétriques, fonctions symétriques non commutatives et algèbres de Hecke à \(q=0\). C. R. Acad. Sci. Paris Sér. I Math. 322(2), 107–112 (1996)Google Scholar
  32. 32.
    G. Duchamp, F. Hivert, J.-Y. Thibon, Noncommutative symmetric functions. VI. Free quasi-symmetric functions and related algebras. Int. J. Algebra Comput. 12(5), 671–717 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  33. 33.
    Egge, E., Loehr, N. A., & Warrington, G. S. (2010). From quasisymmetric expansions to Schur expansions via a modified inverse Kostka matrix. Eur. J. Comb., 31(8), 2014–2027.MathSciNetzbMATHCrossRefGoogle Scholar
  34. 34.
    Ehrenborg, R. (1996). On posets and Hopf algebras. Adv. Math., 119(1), 1–25.MathSciNetzbMATHCrossRefGoogle Scholar
  35. 35.
    B. Ellzey, A directed graph generalization of chromatic quasisymmetric functions (2017), arXiv:1709.00454
  36. 36.
    Eğecioğlu, Ö., & Remmel, J. B. (1990). A combinatorial interpretation of the inverse Kostka matrix. Linear Multilinear Algebr., 26(1–2), 59–84.MathSciNetzbMATHGoogle Scholar
  37. 37.
    S. Fomin, R. Stanley, Schubert polynomials and the nil-Coxeter algebra. Adv. Math. 103(2), 196–207 (1994)MathSciNetzbMATHCrossRefGoogle Scholar
  38. 38.
    Foulkes, H. O. (1950). Concomitants of the quintic and sextic up to degree four in the coefficients of the ground form. J. Lond. Math. Soc., 25, 205–209.MathSciNetzbMATHCrossRefGoogle Scholar
  39. 39.
    W. Fulton, Young Tableaux, vol. 35. London Mathematical Society Student Texts (Cambridge University Press, Cambridge, 1997)Google Scholar
  40. 40.
    A. Garsia, J. Remmel, A note on passing from a quasi-symmetric function expansion to a Schur function expansion of a symmetric function (2018), arXiv:1802.09686
  41. 41.
    Garsia, A. M., & Wallach, N. (2003). Qsym over Sym is free. J. Comb. Theory Ser. A, 104(2), 217–263.MathSciNetzbMATHCrossRefGoogle Scholar
  42. 42.
    V. Gasharov, Incomparability graphs of \((3+1)\)-free posets are \(s\)-positive, in Proceedings of the 6th Conference on Formal Power Series and Algebraic Combinatorics (New Brunswick, NJ, 1994), vol. 157 (1996), pp. 193–197Google Scholar
  43. 43.
    Gelfand, I. M., Krob, D., Lascoux, A., Leclerc, B., Retakh, V. S., & Thibon, J.-Y. (1995). Noncommutative symmetric functions. Adv. Math., 112(2), 218–348.MathSciNetzbMATHCrossRefGoogle Scholar
  44. 44.
    Gessel, I. M. (1984). Multipartite P-partitions and inner products of skew Schur functions. Contemp. Math., 34, 289–301.MathSciNetzbMATHCrossRefGoogle Scholar
  45. 45.
    I.M. Gessel, A historical survey of \(P\)-partitions, The Mathematical Legacy of Richard P. Stanley (American Mathematical Society, Providence, 2016), pp. 169–188Google Scholar
  46. 46.
    D. Grinberg, Dual creation operators and a dendriform algebra structure on the quasisymmetric functions. Can. J. Math. 69(1), 21–53 (2017)MathSciNetzbMATHCrossRefGoogle Scholar
  47. 47.
    D. Grinberg, V. Reiner, Hopf algebras in combinatorics (2014), arXiv:1409.8356
  48. 48.
    M. Guay-Paquet, A modular relation for the chromatic symmetric functions of (3+1)-free posets (2013), arXiv:1306.2400
  49. 49.
    M. Guay-Paquet, A second proof of the Shareshian–Wachs conjecture, by way of a new Hopf algebra (2016), arXiv:1601.05498
  50. 50.
    Haglund, J. (2004). A combinatorial model for the Macdonald polynomials. Proc. Natl. Acad. Sci. USA, 101(46), 16127.MathSciNetzbMATHCrossRefGoogle Scholar
  51. 51.
    J. Haglund, The genesis of the Macdonald polynomial statistics. Sém. Lothar. Comb. 54A, Art. B54Ao, 16 (2005/07)Google Scholar
  52. 52.
    J. Haglund, The \( q\),\(t\)-Catalan Numbers and the Space of Diagonal Harmonics, vol. 41. University Lecture Series (American Mathematical Society, Providence, 2008)Google Scholar
  53. 53.
    J. Haglund, A.T. Wilson, Macdonald polynomials and chromatic quasisymmetric functions (2017)Google Scholar
  54. 54.
    Haglund, J., Haiman, M., & Loehr, N. (2004). A combinatorial formula for Macdonald polynomials. J. Am. Math. Soc., 18, 735–761.MathSciNetzbMATHCrossRefGoogle Scholar
  55. 55.
    Haglund, J., Haiman, M., & Loehr, N. (2005). Combinatorial theory of Macdonald polynomials I: proof of Haglund’s formula. Proc. Natl. Acad. Sci., 102(8), 2690.MathSciNetzbMATHCrossRefGoogle Scholar
  56. 56.
    Haglund, J., Haiman, M., & Loehr, N. (2008). A combinatorial formula for nonsymmetric Macdonald polynomials. Am. J. Math., 130(2), 359–383.MathSciNetzbMATHCrossRefGoogle Scholar
  57. 57.
    Haglund, J., Luoto, K., Mason, S., & van Willigenburg, S. (2011). Quasisymmetric Schur functions. J. Comb. Theory Ser. A, 118(2), 463–490.MathSciNetzbMATHCrossRefGoogle Scholar
  58. 58.
    Haglund, J., Luoto, K., Mason, S., & van Willigenburg, S. (2011). Refinements of the Littlewood-Richardson rule. Trans. Am. Math. Soc., 363(3), 1665–1686.MathSciNetzbMATHCrossRefGoogle Scholar
  59. 59.
    M. Haiman, Hilbert, schemes, polygraphs and the Macdonald positivity conjecture. J. Am. Math. Soc. 14(4), 941–1006 (electronic) (2001)Google Scholar
  60. 60.
    Hazewinkel, M. (2001). The algebra of quasi-symmetric functions is free over the integers. Adv. Math., 164(2), 283–300.MathSciNetzbMATHCrossRefGoogle Scholar
  61. 61.
    M. Hazewinkel, Symmetric functions, noncommutative symmetric functions, and quasisymmetric functions. Acta Appl. Math. 75(1–3), 55–83 (2003) (Monodromy and differential equations (Moscow, 2001))Google Scholar
  62. 62.
    Hazewinkel, M. (2010). Explicit polynomial generators for the ring of quasisymmetric functions over the integers. Acta Appl. Math., 109(1), 39–44.MathSciNetzbMATHCrossRefGoogle Scholar
  63. 63.
    M. Hazewinkel, N. Gubareni, V.V. Kirichenko, Algebras, Rings and Modules. Volume 168 of Mathematical Surveys and Monographs (American Mathematical Society, Providence, 2010) (Lie algebras and Hopf algebras)Google Scholar
  64. 64.
    Hersh, P., & Hsiao, S. K. (2009). Random walks on quasisymmetric functions. Adv. Math., 222(3), 782–808.MathSciNetzbMATHCrossRefGoogle Scholar
  65. 65.
    Hivert, F. (1998). Analogues non-commutatifs et quasi-symétriques des fonctions de Hall-Littlewood, et modules de Demazure d’une algèbre enveloppante quantique dégénérée. C. R. Acad. Sci. Paris Sér. I Math., 326(1), 1–6.MathSciNetzbMATHCrossRefGoogle Scholar
  66. 66.
    Hivert, F. (2000). Hecke algebras, difference operators, and quasi-symmetric functions. Adv. Math., 155(2), 181–238.MathSciNetzbMATHCrossRefGoogle Scholar
  67. 67.
    Hoffman, M. E. (2015). Quasi-symmetric functions and mod \(p\) multiple harmonic sums. Kyushu J. Math., 69(2), 345–366.MathSciNetzbMATHCrossRefGoogle Scholar
  68. 68.
    S.K. Hsiao, T.K. Petersen, The Hopf algebras of type B quasisymmetric functions and peak functions (2006), arXiv:math/0610976
  69. 69.
    Hsiao, S. K., & Karaali, G. (2011). Multigraded combinatorial Hopf algebras and refinements of odd and even subalgebras. J. Algebr. Comb., 34(3), 451–506.MathSciNetzbMATHCrossRefGoogle Scholar
  70. 70.
    Hsiao, S. K., & Kyle Petersen, T. (2010). Colored posets and colored quasisymmetric functions. Ann. Comb., 14(2), 251–289.MathSciNetzbMATHCrossRefGoogle Scholar
  71. 71.
    Huang, J. (2014). 0-Hecke algebra actions on coinvariants and flags. J. Algebr. Comb., 40(1), 245–278.MathSciNetzbMATHCrossRefGoogle Scholar
  72. 72.
    Huang, J. (2015). 0-Hecke algebra action on the Stanley-Reisner ring of the Boolean algebra. Ann. Comb., 19(2), 293–323.MathSciNetzbMATHCrossRefGoogle Scholar
  73. 73.
    Huang, J. (2016). A tableau approach to the representation theory of 0-Hecke algebras. Ann. Comb., 20(4), 831–868.MathSciNetzbMATHCrossRefGoogle Scholar
  74. 74.
    Joni, S. A., & Rota, G.-C. (1979). Coalgebras and bialgebras in combinatorics. Stud. Appl. Math., 61(2), 93–139.MathSciNetzbMATHCrossRefGoogle Scholar
  75. 75.
    Knuth, D. E. (1970). Permutations, matrices, and generalized young tableaux. Pac. J. Math., 34(3), 709–727.MathSciNetzbMATHCrossRefGoogle Scholar
  76. 76.
    D. Krob, J.-Y. Thibon, Noncommutative symmetric functions. IV. Quantum linear groups and Hecke algebras at \(q=0\). J. Algebr. Comb. 6(4), 339–376 (1997)Google Scholar
  77. 77.
    A. Lascoux, M.P. Schützenberger, Polynômes de Schubert. C. R. Acad. Sci. Paris Sér. I Math. 294(13), 447–450 (1982)Google Scholar
  78. 78.
    A. Lascoux, M.-P. Schützenberger, Keys & standard bases, in Invariant Theory and Tableaux (Minneapolis, MN, 1988). Volume 19 of IMA Volumes in Mathematics and its Applications (Springer, New York, 1990), pp. 125–144Google Scholar
  79. 79.
    Lauve, A., & Mason, S. K. (2011). QSym over Sym has a stable basis. J. Comb. Theory Ser. B, 118(5), 1661–1673.MathSciNetzbMATHCrossRefGoogle Scholar
  80. 80.
    E. Leven, Two special cases of the rational shuffle conjecture, in 26th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2014), Discrete Mathematics & Theoretical Computer Science Proceedings, AT. (Assoc. Discrete Math. Theor. Comput. Sci., Nancy, 2014), pp. 789–800Google Scholar
  81. 81.
    Li, Y. (2016). Toward a polynomial basis of the algebra of peak quasisymmetric functions. J. Algebr. Comb., 44(4), 931–946.MathSciNetzbMATHCrossRefGoogle Scholar
  82. 82.
    Littlewood, D. E. (1961). On certain symmetric functions. Proc. Lond. Math. Soc., 3(11), 485–498.MathSciNetzbMATHCrossRefGoogle Scholar
  83. 83.
    Loehr, N. A., & Warrington, G. S. (2012). Quasisymmetric expansions of Schur-function plethysms. Proc. Am. Math. Soc., 140(4), 1159–1171.MathSciNetzbMATHCrossRefGoogle Scholar
  84. 84.
    M. Lothaire, Combinatorics on Words. Cambridge Mathematical Library (Cambridge University Press, Cambridge, 1997)Google Scholar
  85. 85.
    K. Luoto, S. Mykytiuk, S. van Willigenburg, An Introduction to Quasisymmetric Schur Functions. Springer Briefs in Mathematics (Springer, New York, 2013)Google Scholar
  86. 86.
    I.G. Macdonald, A new class of symmetric functions. Sémin. Lothar. Comb. 20 (1988)Google Scholar
  87. 87.
    I.G. Macdonald, Symmetric functions and Hall polynomials, 2nd edn. Oxford Mathematical Monographs (The Clarendon Press, Oxford University Press, New York, 1995)Google Scholar
  88. 88.
    I.G. Macdonald, Symmetric Functions and Orthogonal Polynomials, vol. 12. University Lecture Series (American Mathematical Society, Providence, 1998)Google Scholar
  89. 89.
    C. Malvenuto, Produits et coproduits des fonctions quasi-symétriques et de l’alg‘ebre des descentes. PhD thesis, Laboratoire de Combinatoire et d’Informatique Mathématique UQAM (1994)Google Scholar
  90. 90.
    Malvenuto, C., & Reutenauer, C. (1995). Duality between quasi-symmetric functions and the Solomon descent algebra. J. Algebr., 177(3), 967–982.MathSciNetzbMATHCrossRefGoogle Scholar
  91. 91.
    S. Mason, A decomposition of Schur functions and an analogue of the Robinson-Schensted-Knuth algorithm. Sémin. Lothar. Comb. 57, B57e (2008)Google Scholar
  92. 92.
    Mason, S. (2009). An explicit construction of type A Demazure atoms. J. Algebr. Comb., 29(3), 295–313.MathSciNetzbMATHCrossRefGoogle Scholar
  93. 93.
    P.-L. Méliot, Representation Theory of Symmetric Groups. Discrete Mathematics and its Applications (Boca Raton) (CRC Press, Boca Raton, 2017)Google Scholar
  94. 94.
    Murnaghan, F. D. (1937). On the representations of the symmetric group. Am. J. Math., 59(3), 437–488.zbMATHCrossRefGoogle Scholar
  95. 95.
    Nakayama, T. (1941). On some modular properties of irreducible representations of a symmetric group I. Jpn. J. Math., 18, 89–108.MathSciNetGoogle Scholar
  96. 96.
    Norton, P. N. (1979). \(0\)-Hecke algebras. J. Austral. Math. Soc. Ser. A, 27(3), 337–357.MathSciNetzbMATHCrossRefGoogle Scholar
  97. 97.
    Novelli, J.-C., Thibon, J.-Y., & Williams, L. K. (2010). Combinatorial Hopf algebras, noncommutative Hall-Littlewood functions, and permutation tableaux. Adv. Math., 224(4), 1311–1348.MathSciNetzbMATHCrossRefGoogle Scholar
  98. 98.
    Novelli, J.-C., Tevlin, L., & Thibon, J.-Y. (2013). On some noncommutative symmetric functions analogous to Hall-Littlewood and Macdonald polynomials. Int. J. Algebr. Comput., 23(4), 779–801.MathSciNetzbMATHCrossRefGoogle Scholar
  99. 99.
    Opdam, E. M. (1995). Harmonic analysis for certain representations of graded Hecke algebras. Acta Math., 175(1), 75–121.MathSciNetzbMATHCrossRefGoogle Scholar
  100. 100.
    T. Kyle Petersen, A note on three types of quasisymmetric functions. Electron. J. Comb. 12, Research Paper 61, 10 (2005)Google Scholar
  101. 101.
    T. Kyle Petersen, Enriched, \(P\)-partitions and peak algebras. Adv. Math. 209(2), 561–610 (2007)Google Scholar
  102. 102.
    D. Qiu, J. Remmel, Schur function expansions and the rational shuffle conjecture. Sém. Lothar. Comb. 78B, Art. 83, 13 (2017)Google Scholar
  103. 103.
    Radford, D. E. (1979). A natural ring basis for the shuffle algebra and an application to group schemes. J. Algebra, 58(2), 432–454.MathSciNetzbMATHCrossRefGoogle Scholar
  104. 104.
    Ram, A., & Yip, M. (2011). A combinatorial formula for Macdonald polynomials. Adv. Math., 226(1), 309–331.MathSciNetzbMATHCrossRefGoogle Scholar
  105. 105.
    Reiner, V., & Shimozono, M. (1995). Key polynomials and a flagged Littlewood-Richardson rule. J. Comb. Theory Ser. A, 70(1), 107–143.MathSciNetzbMATHCrossRefGoogle Scholar
  106. 106.
    Remmel, J. B., & Whitney, R. (1984). Multiplying Schur functions. J. Algorithms, 5(4), 471–487.MathSciNetzbMATHCrossRefGoogle Scholar
  107. 107.
    C. Reutenauer, Free Lie Algebras, vol. 7. London Mathematical Society Monographs. New Series (The Clarendon Press, Oxford University Press, New York, 1993)Google Scholar
  108. 108.
    B.E. Sagan, The Symmetric Group. Volume 203 of Graduate Texts in Mathematics, 2nd edn. (Springer, New York, 2001)zbMATHCrossRefGoogle Scholar
  109. 109.
    S. Sahi, Nonsymmetric, Koornwinder polynomials and duality. Ann. Math. (2) 150(1), 267–282 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  110. 110.
    Schensted, C. (1961). Longest increasing and decreasing subsequences. Can. J. Math., 13, 179–191.MathSciNetzbMATHCrossRefGoogle Scholar
  111. 111.
    Schmitt, W. R. (1994). Incidence Hopf algebras. J. Pure Appl. Algebra, 96(3), 299–330.MathSciNetzbMATHCrossRefGoogle Scholar
  112. 112.
    Scott, D., & Suppes, P. (1958). Foundational aspects of theories of measurement. J. Symb. Log., 23, 113–128.MathSciNetzbMATHCrossRefGoogle Scholar
  113. 113.
    Shareshian, J., & Wachs, M. L. (2010). Eulerian quasisymmetric functions. Adv. Math., 225(6), 2921–2966.MathSciNetzbMATHCrossRefGoogle Scholar
  114. 114.
    J. Shareshian, M.L. Wachs, Chromatic quasisymmetric functions and Hessenberg varieties, in Configuration Spaces. Volume 14 of CRM Series. Ed. Norm. (Pisa, 2012), pp. 433–460Google Scholar
  115. 115.
    Shareshian, J., & Wachs, M. L. (2016). Chromatic quasisymmetric functions. Adv. Math., 295, 497–551.MathSciNetzbMATHCrossRefGoogle Scholar
  116. 116.
    Solomon, L. (1976). A Mackey formula in the group ring of a Coxeter group. J. Algebra, 41(2), 255–264.MathSciNetzbMATHCrossRefGoogle Scholar
  117. 117.
    R.P. Stanley, Ordered Structures and Partitions. Memoirs of the American Mathematical Society, No. 119 (American Mathematical Society, Providence, 1972)CrossRefGoogle Scholar
  118. 118.
    Stanley, R. P. (1995). A symmetric function generalization of the chromatic polynomial of a graph. Adv. Math., 111(1), 166–194.MathSciNetzbMATHCrossRefGoogle Scholar
  119. 119.
    R.P. Stanley, Enumerative combinatorics, 62 of Cambridge Studies in Advanced Mathematics, vol. 2 (Cambridge University Press, Cambridge, 1999)Google Scholar
  120. 120.
    Stanley, R. P. (2001). Generalized riffle shuffles and quasisymmetric functions. Ann. Comb., 5(3–4), 479–491.MathSciNetzbMATHCrossRefGoogle Scholar
  121. 121.
    Stanley, R. P., & Stembridge, J. R. (1993). On immanants of Jacobi-Trudi matrices and permutations with restricted position. J. Comb. Theory Ser. A, 62(2), 261–279.MathSciNetzbMATHCrossRefGoogle Scholar
  122. 122.
    Stembridge, J. R. (1997). Enriched \(P\)-partitions. Trans. Am. Math. Soc., 349(2), 763–788.MathSciNetzbMATHCrossRefGoogle Scholar
  123. 123.
    Tewari, V. V., & van Willigenburg, S. J. (2015). Modules of the 0-Hecke algebra and quasisymmetric Schur functions. Adv. Math., 285, 1025–1065.MathSciNetzbMATHCrossRefGoogle Scholar
  124. 124.
    Yip, M. (2012). A Littlewood-Richardson rule for Macdonald polynomials. Math. Z., 272(3–4), 1259–1290.MathSciNetzbMATHCrossRefGoogle Scholar
  125. 125.
    A.V. Zelevinsky, Representations of Finite Classical Groups, vol. 869. Lecture Notes in Mathematics (Springer, Berlin, 1981)zbMATHCrossRefGoogle Scholar

Copyright information

© The Author(s) and the Association for Women in Mathematics 2019

Authors and Affiliations

  1. 1.Department of MathematicsWake Forest UniversityWinston-SalemUSA

Personalised recommendations