Recent Trends in Algebraic Combinatorics pp 75-113 | Cite as
A Survey of the Shi Arrangement
Abstract
In [58], Shi proved Lusztig’s conjecture that the number of two-sided cells for the affine Weyl group of type \(A_{n-1}\) is the number of partitions of n. As a byproduct, he introduced the Shi arrangement of hyperplanes and found a few of its remarkable properties. The Shi arrangement has since become a central object in algebraic combinatorics. This article is intended to be a fairly gentle introduction to the Shi arrangement, intended for readers with a modest background in combinatorics, algebra, and Euclidean geometry.
Notes
Acknowledgements
The author would like to thank Hélène Barcelo, Gizem Karaali, and Rosa Orellana for allowing her to write an article for this AWM series. She would like to thank Matthew Fayers, Sarah Mason, and Jian-Yi Shi for comments on the manuscript, and Nathan Williams and Brendon Rhoades for suggesting several related papers. She would like to thank Patrick Headley for help with his thesis. The anonymous referees’ comments helped enormously to improve exposition. This work was supported by a grant from the Simons Foundation (#359602, Susanna Fishel).
References
- 1.T. Abe, D. Suyama, S. Tsujie, The freeness of Ish arrangements. J. Comb. Theory Ser. A 146, 169–183 (2017). MR 3574228MathSciNetzbMATHGoogle Scholar
- 2.J. Anderson, Partitions which are simultaneously \(t_1\)- and \(t_2\)-core. Discret. Math. 248(1–3), 237–243 (2002). MR 1892698MathSciNetzbMATHGoogle Scholar
- 3.F. Ardila, Computing the Tutte polynomial of a hyperplane arrangement. Pac. J. Math. 230(1), 1–26 (2007). MR 2318445MathSciNetzbMATHGoogle Scholar
- 4.D. Armstrong, Generalized Noncrossing Partitions and Combinatorics of Coxeter Groups, Memoirs of the American Mathematical Society (2009), x+159 p. MR 2561274Google Scholar
- 5.D. Armstrong, Hyperplane arrangements and diagonal harmonics. J. Comb. 4(2), 157–190 (2013). MR 3096132MathSciNetzbMATHGoogle Scholar
- 6.D. Armstrong, V. Reiner, B. Rhoades, Parking spaces. Adv. Math. 269, 647–706 (2015). MR 3281144MathSciNetzbMATHGoogle Scholar
- 7.D. Armstrong, B. Rhoades, The Shi arrangement and the Ish arrangement. Trans. Am. Math. Soc. 364(3), 1509–1528 (2012). MR 2869184MathSciNetzbMATHGoogle Scholar
- 8.C.A. Athanasiadis, Characteristic polynomials of subspace arrangements and finite fields. Adv. Math. 122(2), 193–233 (1996). MR 1409420MathSciNetzbMATHGoogle Scholar
- 9.C.A. Athanasiadis, On free deformations of the braid arrangement. Eur. J. Comb. 19(1), 7–18 (1998). MR 1600259MathSciNetzbMATHGoogle Scholar
- 10.C.A. Athanasiadis, Deformations of Coxeter hyperplane arrangements and their characteristic polynomials, Arrangements-Tokyo 1998. Advanced Studies in Pure Mathematics, vol. 27 (Kinokuniya, Tokyo, 2000), pp. 1–26. MR 1796891Google Scholar
- 11.C.A. Athanasiadis, Generalized Catalan numbers, Weyl groups and arrangements of hyperplanes. Bull. Lond. Math. Soc. 36(3), 294–302 (2004). MR 2038717MathSciNetzbMATHGoogle Scholar
- 12.C.A. Athanasiadis, On a refinement of the generalized Catalan numbers for Weyl groups. Trans. Am. Math. Soc. 357(1), 179–196 (2005). MR 2098091MathSciNetzbMATHGoogle Scholar
- 13.C.A. Athanasiadis, A combinatorial reciprocity theorem for hyperplane arrangements. Can. Math. Bull. 53(1), 3–10 (2010). MR 2583206MathSciNetzbMATHGoogle Scholar
- 14.C.A. Athanasiadis, S. Linusson, A simple bijection for the regions of the Shi arrangement of hyperplanes. Discret. Math. 204(1–3), 27–39 (1999). MR 1691861MathSciNetzbMATHGoogle Scholar
- 15.C.A. Athanasiadis, E. Tzanaki, On the enumeration of positive cells in generalized cluster complexes and Catalan hyperplane arrangements. J. Algebra. Comb. 23(4), 355–375 (2006). MR 2236611MathSciNetzbMATHGoogle Scholar
- 16.M. Beck, A. Berrizbeitia, M. Dairyko, C. Rodriguez, A. Ruiz, S. Veeneman, Parking functions, Shi arrangements, and mixed graphs. Am. Math. Mon. 122(7), 660–673 (2015). MR 3383893MathSciNetzbMATHGoogle Scholar
- 17.A. Björner, F. Brenti, Combinatorics of Coxeter groups, Graduate Texts in Mathematics, vol. 231 (Springer, New York, 2005). MR 2133266Google Scholar
- 18.A. Blass, B.E. Sagan, Characteristic and Ehrhart polynomials. J. Algebra. Comb. 7(2), 115–126 (1998). MR 1609889MathSciNetzbMATHGoogle Scholar
- 19.N. Bourbaki, éléments de mathématique. Fasc. XXXIV. Groupes et algèbres de Lie. Chapitre IV: Groupes de Coxeter et systèmes de Tits. Chapitre V: Groupes engendrés par des réflexions. Chapitre VI: systèmes de racines, Actualités Scientifiques et Industrielles, vol. 1337 (Hermann, Paris, 1968). MR 0240238Google Scholar
- 20.P. Cellini, P. Papi, Ad-nilpotent ideals of a Borel subalgebra. J. Algebra 225(1), 130–141 (2000). MR 1743654MathSciNetzbMATHGoogle Scholar
- 21.P. Cellini, P. Papi, Ad-nilpotent ideals of a Borel subalgebra II. J. Algebra 258(1), 112–121 (2002). Special issue in celebration of Claudio Procesi’s 60th birthday. MR 1958899MathSciNetzbMATHGoogle Scholar
- 22.P. Cellini, P. Papi, Abelian ideals of Borel subalgebras and affine Weyl groups. Adv. Math. 187(2), 320–361 (2004). MR 2078340MathSciNetzbMATHGoogle Scholar
- 23.H.H. Crapo, G-C. Rota, On the Foundations of Combinatorial Theory: Combinatorial Geometries, preliminary ed., (MIT Press, Cambridge, London, 1970). MR 0290980Google Scholar
- 24.C.-P. Dong, Ad-nilpotent ideals and the Shi arrangement. J. Comb. Theory Ser. A 120(8), 2118–2136 (2013). MR 3102177MathSciNetzbMATHGoogle Scholar
- 25.R. Duarte, A.G. de Oliveira, The braid and the Shi arrangements and the Pak-Stanley labelling. Eur. J. Comb. 50, 72–86 (2015). MR 3361413MathSciNetzbMATHGoogle Scholar
- 26.S. Fishel, M. Kallipoliti, E. Tzanaki, Facets of the generalized cluster complex and regions in the extended Catalan arrangement of type \(A\). Electron. J. Comb. 20(4), 7–21 (2013). MR 3139392MathSciNetzbMATHGoogle Scholar
- 27.S. Fishel, E. Tzanaki, M. Vazirani, Counting Shi regions with a fixed separating wall. Ann. Comb. 17(4), 671–693 (2013). MR 3129778MathSciNetzbMATHGoogle Scholar
- 28.S. Fishel, M. Vazirani, A bijection between dominant Shi regions and core partitions. Eur. J. Comb. 31(8), 2087–2101 (2010). MR 2718283MathSciNetzbMATHGoogle Scholar
- 29.D. Forge, T. Zaslavsky, Lattice point counts for the Shi arrangement and other affinographic hyperplane arrangements. J. Comb. Theory Ser. A 114(1), 97–109 (2007). MR 2275583MathSciNetzbMATHGoogle Scholar
- 30.A.M. Garsia, M. Haiman, A remarkable \(q, t\)-Catalan sequence and \(q\)-Lagrange inversion. J. Algebra. Comb. 5(3), 191–244 (1996). MR 1394305MathSciNetzbMATHGoogle Scholar
- 31.E. Gorsky, M. Mazin, M. Vazirani, Affine permutations and rational slope parking functions. Trans. Am. Math. Soc. 368(12), 8403–8445 (2016). MR 3551576MathSciNetzbMATHGoogle Scholar
- 32.P.E. Gunnells, Cells in Coxeter groups. Not. Am. Math. Soc. 53(5), 528–535 (2006). MR 2254399MathSciNetzbMATHGoogle Scholar
- 33.P.E. Gunnells, Automata and cells in affine Weyl groups. Represent. Theory 14, 627–644 (2010). MR 2726285MathSciNetzbMATHGoogle Scholar
- 34.P.E. Gunnells, E. Sommers, A characterization of Dynkin elements. Math. Res. Lett. 10(2–3), 363–373 (2003). MR 1981909MathSciNetzbMATHGoogle Scholar
- 35.J. Haglund, The q,t-Catalan Numbers and the Space of Diagonal Harmonics. University Lecture Series, vol. 41 (American Mathematical Society, Providence, 2008). With an appendix on the combinatorics of Macdonald polynomials. MR 2371044Google Scholar
- 36.M.D. Haiman, Conjectures on the quotient ring by diagonal invariants. J. Algebra. Comb. 3(1), 17–76 (1994). MR 1256101MathSciNetzbMATHGoogle Scholar
- 37.P.T. Headley, Reduced expressions in infinite Coxeter groups, Ph.D. Thesis, University of Michigan (ProQuest LLC, Ann Arbor, MI, 1994). MR 2691313Google Scholar
- 38.P. Headley, On a family of hyperplane arrangements related to the affine Weyl groups. J. Algebra. Comb. 6(4), 331–338 (1997). MR 1471893MathSciNetzbMATHGoogle Scholar
- 39.C. Hohlweg, P. Nadeau, N. Williams, Automata, reduced words and Garside shadows in Coxeter groups. J. Algebra 457, 431–456 (2016). MR 3490088MathSciNetzbMATHGoogle Scholar
- 40.S. Hopkins, D. Perkinson, Bigraphical arrangements. Trans. Am. Math. Soc. 368(1), 709–725 (2016). MR 3413881MathSciNetzbMATHGoogle Scholar
- 41.J.E. Humphreys, Reflection Groups and Coxeter Groups. Cambridge Studies in Advanced Mathematics, vol. 29 (Cambridge University Press, Cambridge, 1990). MR 1066460Google Scholar
- 42.G. James, A. Kerber, The Representation Theory of the Symmetric Group. Encyclopedia of Mathematics and its Applications, vol. 16 (Addison-Wesley Publishing Co., Reading, 1981). With a foreword by P. M. Cohn, With an introduction by Gilbert de B. Robinson. MR 644144Google Scholar
- 43.V.G. Kac, Infinite-dimensional Lie Algebras, 3rd edn. (Cambridge University Press, Cambridge, 1990). MR 1104219zbMATHGoogle Scholar
- 44.D. Kazhdan, G. Lusztig, Representations of Coxeter groups and Hecke algebras. Invent. Math. 53(2), 165–184 (1979). MR 560412MathSciNetzbMATHGoogle Scholar
- 45.L. Lapointe, J. Morse, Tableaux on \(k+1\)-cores, reduced words for affine permutations, and \(k\)-Schur expansions. J. Comb. Theory Ser. A 112(1), 44–81 (2005). MR 2167475MathSciNetzbMATHGoogle Scholar
- 46.A. Lascoux, Ordering the affine symmetric group, Algebraic Combinatorics and Applications, Gößweinstein, 1999 (Springer, Berlin, 2001), pp. 219–231. MR 1851953Google Scholar
- 47.E. Leven, B. Rhoades, A.T. Wilson, Bijections for the Shi and Ish arrangements. Eur. J. Comb. 39, 1–23 (2014). MR 3168512MathSciNetzbMATHGoogle Scholar
- 48.G. Lusztig, Some examples of square integrable representations of semisimple \(p\)-adic groups. Trans. Am. Math. Soc. 277(2), 623–653 (1983). MR 694380MathSciNetzbMATHGoogle Scholar
- 49.J. McCammond, H. Thomas, N. Williams, Fixed points of parking functions (2017)Google Scholar
- 50.K. Mészáros, Labeling the regions of the type \(C_n\) Shi arrangement. Electron. J. Comb. 20(2), Paper 31, 12 (2013). MR 3066370Google Scholar
- 51.J.W. Moon, in Counting Labelled Trees, From lectures delivered to the Twelfth Biennial Seminar of the Canadian Mathematical Congress, Vancouver, vol. 1969 (Que, Canadian Mathematical Congress, Montreal, 1970). MR 0274333Google Scholar
- 52.D.I. Panyushev, Ad-nilpotent ideals of a Borel subalgebra: generators and duality. J. Algebra 274(2), 822–846 (2004). MR 2043377MathSciNetzbMATHGoogle Scholar
- 53.T. Kyle Petersen, Eulerian Numbers, Birkhäuser Advanced Texts: Basler Lehrbücher. [Birkhäuser Advanced Texts: Basel Textbooks] (Birkhäuser/Springer, New York, 2015). With a foreword by Richard Stanley. MR 3408615zbMATHGoogle Scholar
- 54.A. Postnikov, Deformations of Coxeter hyperplane arrangements. J. Comb. Theory Ser. A 91(1–2), 544–597 (2000). In memory of Gian-Carlo Rota. MR 1780038MathSciNetzbMATHGoogle Scholar
- 55.M.J. Richards, Some decomposition numbers for Hecke algebras of general linear groups. Math. Proc. Camb. Philos. Soc. 119(3), 383–402 (1996). MR 1357053MathSciNetzbMATHGoogle Scholar
- 56.F. Rincón, A labelling of the faces in the Shi arrangement, Rose-Hulman Undergrad. Math. J. 8(1), 7 (2007)Google Scholar
- 57.J. Scopes, Cartan matrices and Morita equivalence for blocks of the symmetric groups. J. Algebra 142(2), 441–455 (1991). MR 1127075MathSciNetzbMATHGoogle Scholar
- 58.J.Y. Shi, The Kazhdan-Lusztig Cells in Certain Affine Weyl Groups. Lecture Notes in Mathematics, vol. 1179 (Springer, Berlin, 1986). MR 835214zbMATHGoogle Scholar
- 59.J.Y. Shi, Alcoves corresponding to an affine Weyl group. J. Lond. Math. Soc. (2) 35(1), 42–55 (1987). MR 871764MathSciNetzbMATHGoogle Scholar
- 60.J.Y. Shi, Sign types corresponding to an affine Weyl group. J. Lond. Math. Soc. (2) 35(1), 56–74 (1987). MR 871764MathSciNetzbMATHGoogle Scholar
- 61.J.Y. Shi, A two-sided cell in an affine Weyl group. J. Lond. Math. Soc. (2) 36(3), 407–420 (1987). MR 918633MathSciNetzbMATHGoogle Scholar
- 62.J.Y. Shi, A two-sided cell in an affine Weyl group II. J. Lond. Math. Soc. (2) 37(2), 253–264 (1988). MR 918633MathSciNetzbMATHGoogle Scholar
- 63.J.Y. Shi, Jian Yi Shi, Left cells in the affine Weyl group \(W_a({\widetilde{D}}_4)\). Osaka J. Math. 31(1), 27–50 (1994). MR 1262787MathSciNetzbMATHGoogle Scholar
- 64.J.-Y. Shi, The number of \(\oplus \)-sign types. Q. J. Math. Oxf. Ser. (2) 48(189), 93–105 (1997). MR 1439701MathSciNetzbMATHGoogle Scholar
- 65.S. Sivasubramanian, On the two variable distance enumerator of the Shi hyperplane arrangement. Eur. J. Comb. 29(5), 1104–1111 (2008). MR 2419213MathSciNetzbMATHGoogle Scholar
- 66.N. Eric, Sommers, \(B\)-stable ideals in the nilradical of a Borel subalgebra. Can. Math. Bull. 48(3), 460–472 (2005). MR 2154088zbMATHGoogle Scholar
- 67.P. Richard, Stanley, Hyperplane arrangements, interval orders, and trees. Proc. Natl. Acad. Sci. USA 93(6), 2620–2625 (1996). MR 1379568zbMATHGoogle Scholar
- 68.R.P. Stanley, Hyperplane arrangements, parking functions and tree inversions, Mathematical Essays in Honor of Gian-Carlo Rota (Cambridge, MA, 1996). Progress in Mathematics, vol. 161 (Birkhäuser, Boston, 1998), pp. 359–375. MR 1627378Google Scholar
- 69.R.P. Stanley, An introduction to hyperplane arrangements, Geometric Combinatorics, IAS/Park City Mathematics Series (American Mathematical Society, Providence, 2007), pp. 389–496. MR 2383131Google Scholar
- 70.R.P. Stanley, Enumerative Combinatorics, Volume 1, 2nd edn. Cambridge Studies in Advanced Mathematics, vol. 49 (Cambridge University Press, Cambridge, 2012). MR 2868112Google Scholar
- 71.R.P. Stanley, Catalan Numbers (Cambridge University Press, New York, 2015). MR 3467982zbMATHGoogle Scholar
- 72.R. Sulzgruber, Rational Shi tableaux and the skew length statistic (2015), arXiv:1512.04320
- 73.R. Suter, Abelian ideals in a Borel subalgebra of a complex simple Lie algebra. Invent. Math. 156(1), 175–221 (2004). MR 2047661MathSciNetzbMATHGoogle Scholar
- 74.M. Thiel, On floors and ceilings of the \(k\)-Catalan arrangement. Electron. J. Comb. 21(4), Paper 4.36, 15. MR 3292273Google Scholar
- 75.H. Thomas, N. Williams, Cyclic symmetry of the scaled simplex. J. Algebra. Comb. 39(2), 225–246 (2014). MR 3159251MathSciNetzbMATHGoogle Scholar
- 76.T. Zaslavsky, Counting the faces of cut-up spaces. Bull. Am. Math. Soc. 81(5), 916–918 (1975). MR 0400066MathSciNetzbMATHGoogle Scholar
- 77.Thomas Zaslavsky, Facing up to arrangements: face-count formulas for partitions of space by hyperplanes. Memoirs Am. Math. Soc. 1(154), vii+102 p. (1975). MR 0357135Google Scholar