Crystal Constructions in Number Theory

  • Anna PuskásEmail author
Part of the Association for Women in Mathematics Series book series (AWMS, volume 16)


Weyl group multiple Dirichlet series and metaplectic Whittaker functions can be described in terms of crystal graphs. We present crystals as parameterized by Littelmann patterns, and we give a survey of purely combinatorial constructions of prime power coefficients of Weyl group multiple Dirichlet series and metaplectic Whittaker functions using the language of crystal graphs. We explore how the branching structure of crystals manifests in these constructions, and how it allows access to some intricate objects in number theory and related open questions using tools of algebraic combinatorics.



I would like to thank the editors of this volume for giving me the opportunity to contribute. I am grateful to several people for helpful conversations and advice during the writing of this chapter, including Holley Friedlander, Paul E Gunnells, Dinakar Muthiah, and Manish Patnaik. During parts of the writing process, I was a postdoctoral fellow at the University of Alberta and a visiting assistant professor at the University of Massachusetts, Amherst, and I am grateful to both institutions. While at the University of Alberta, I was supported through Manish Patnaik’s Subbarao Professorship in number theory and an NSERC Discovery Grant. I also thank the referees for their insightful comments for the improvement of this chapter. In particular, I thank one of the referees for their comments on the connections to character theory and on Gauss sums.


  1. 1.
    J. Beineke, B. Brubaker, S. Frechette, Weyl group multiple Dirichlet series of type C. Pac. J. Math. 254(1), 11–46 (2011). MR2900659MathSciNetCrossRefGoogle Scholar
  2. 2.
    J. Beineke, B. Brubaker, S. Frechette, A crystal definition for symplectic multiple Dirichlet series, Multiple Dirichlet series, L-functions and Automorphic Forms (Springer, Berlin, 2012), pp. 37–63CrossRefGoogle Scholar
  3. 3.
    A. Berenstein, A. Zelevinsky, String bases for quantum groups of type \(A_r\). Adv. Sov. Math. 16(1), 51–89 (1993)MathSciNetzbMATHGoogle Scholar
  4. 4.
    A. Berenstein, A. Zelevinsky, Tensor product multiplicities, canonical bases and totally positive varieties. Invent. Math. 143(1), 77–128 (2001). MR1802793MathSciNetCrossRefGoogle Scholar
  5. 5.
    A. Berenstein, A. Zelevinsky et al., Canonical bases for the quantum group of type \({A}_r\) and piecewise-linear combinatorics. Duke Math. J. 82(3), 473–502 (1996)MathSciNetCrossRefGoogle Scholar
  6. 6.
    N. Bourbaki, Lie Groups and Lie Algebras, Chapters 4–6, Elements of Mathematics (Springer, Berlin, 2002). Translated from the 1968 French original by Andrew Pressley. MR1890629 (2003a:17001)CrossRefGoogle Scholar
  7. 7.
    A. Braverman, D. Gaitsgory et al., Crystals via the affine Grassmannian. Duke Math. J. 107(3), 561–575 (2001)MathSciNetCrossRefGoogle Scholar
  8. 8.
    B. Brubaker, S. Friedberg, Whittaker coefficients of metaplectic Eisenstein series. Geom. Funct. Anal. 25(4), 1180–1239 (2015)MathSciNetCrossRefGoogle Scholar
  9. 9.
    B. Brubaker, A. Schultz, On Hamiltonians for six-vertex models (2016), arXiv:1606.00020
  10. 10.
    B. Brubaker, V. Buciumas, D. Bump, A Yang-Baxter equation for metaplectic ice (2016), arXiv:1604.02206
  11. 11.
    B. Brubaker, D. Bump, S. Friedberg, Weyl group multiple Dirichlet series II: the stable case. Invent. Math. 165(2), 325–355 (2006). MR2231959 (2007g:11056)MathSciNetCrossRefGoogle Scholar
  12. 12.
    B. Brubaker, D. Bump, G. Chinta, S. Friedberg, J. Hoffstein, Weyl group multiple Dirichlet series I, in Multiple Dirichlet Series, Automorphic Forms, and Analytic Number Theory (2006), pp. 91–114Google Scholar
  13. 13.
    B. Brubaker, D. Bump, G. Chinta, S. Friedberg, P.E. Gunnells, Metaplectic ice (2010), arXiv:1009.1741
  14. 14.
    B. Brubaker, D. Bump, S. Friedberg, Weyl Group Multiple Dirichlet Series: Type A Combinatorial Theory, Annals of Mathematics Studies (Princeton University Press, Princeton, 2011). MR2791904zbMATHGoogle Scholar
  15. 15.
    B. Brubaker, D. Bump, S. Friedberg, Weyl group multiple Dirichlet series, Eisenstein series and crystal bases. Ann. Math. 173(2), 1081–1120 (2011). MR2776371MathSciNetCrossRefGoogle Scholar
  16. 16.
    B. Brubaker, D. Bump, G. Chinta, P.E. Gunnells, Metaplectic Whittaker functions and crystals of type B, in Multiple Dirichlet Series, L-functions and Automorphic Forms (2012), pp. 93–118CrossRefGoogle Scholar
  17. 17.
    D. Bump, Introduction: multiple Dirichlet series, in Multiple Dirichlet Series, L-functions and Automorphic Forms (2012), pp. 1–36CrossRefGoogle Scholar
  18. 18.
    D. Bump, A. Schilling, Crystal Bases: Representations and Combinatorics (World Scientific Publishing Company, Singapore, 2017)CrossRefGoogle Scholar
  19. 19.
    W. Casselman, J. Shalika, The unramified principal series of p-adic groups II: the Whittaker function. Compos. Math. 41(2), 207–231 (1980). MR581582 (83i:22027)MathSciNetzbMATHGoogle Scholar
  20. 20.
    G. Chinta, S. Friedberg, J. Hoffstein, Multiple Dirichlet series and automorphic forms. Proc. Symp. Pure Math. 75, 3–42 (2006)MathSciNetCrossRefGoogle Scholar
  21. 21.
    G. Chinta, P.E. Gunnells, Constructing Weyl group multiple Dirichlet series. J. Am. Math. Soc. 23(1), 189–215 (2010). MR2552251 (2011g:11100)MathSciNetCrossRefGoogle Scholar
  22. 22.
    G. Chinta, P.E. Gunnells, Littelmann patterns and Weyl group multiple Dirichlet series of type D, Multiple Dirichlet Series, L-functions and Automorphic Forms (Springer, Berlin, 2012), pp. 119–130CrossRefGoogle Scholar
  23. 23.
    G. Chinta, P.E. Gunnells, A. Puskás, Metaplectic Demazure, operators and Whittaker functions. Indiana Univ. Math. J. 66(3) (2014) arXiv:1408.5394
  24. 24.
    G. Chinta, O. Offen, A metaplectic Casselman-Shalika formula for \(GL_r\). Am. J. Math. 135(2), 403–441 (2013)CrossRefGoogle Scholar
  25. 25.
    H. Davenport, H. Hasse, Die Nullstellen der Kongruenzzetafunktionen in gewissen zyklischen Fällen. J. Reine Angew. Math. 172(151–182), 198–201 (1934)zbMATHGoogle Scholar
  26. 26.
    S. Friedberg, L. Zhang, Eisenstein series on covers of odd orthogonal groups. Am. J. Math. 137(4), 953–1011 (2015)MathSciNetCrossRefGoogle Scholar
  27. 27.
    H. Friedlander, L. Gaudet, P.E. Gunnells, Crystal graphs, Tokuyama’s theorem, and the Gindikin-Karpeleviĉ formula for G2. J. Algebr. Comb. 41(4), 1089–1102 (2015). MR3342714CrossRefGoogle Scholar
  28. 28.
    A.M. Hamel, R.C. King, Half-turn symmetric alternating sign matrices and Tokuyama type factorisation for orthogonal group characters. J. Combin. Theory Ser. A 131, 1–31 (2015). MR3291473MathSciNetCrossRefGoogle Scholar
  29. 29.
    J. Kamnitzer, Mirković-Vilonen cycles and polytopes. Ann. Math. 171, 245–294 (2010)MathSciNetCrossRefGoogle Scholar
  30. 30.
    M. Kashiwara, Representations of Groups, (Banff, AB, 1994), vol. 16 (1995), pp. 155–197Google Scholar
  31. 31.
    M. Kashiwara, T. Nakashima, Crystal graphs for representations of the q-analogue of classical Lie algebras. J. Algebra 165(2), 295–345 (1994). MR1273277MathSciNetCrossRefGoogle Scholar
  32. 32.
    V. Lakshmibai, C.S. Seshadri, Standard monomial theory, in Proceedings of the Hyderabad Conference on Algebraic Groups, Hyderabad, 1989 (1991), pp. 279–322. MR1131317Google Scholar
  33. 33.
    P. Littelmann, A Littlewood-Richardson rule for symmetrizable Kac-Moody algebras. Invent. Math. 116(1), 329–346 (1994)MathSciNetCrossRefGoogle Scholar
  34. 34.
    P. Littelmann, Cones, crystals, and patterns. Transform. Groups 3(2), 145–179 (1998)MathSciNetCrossRefGoogle Scholar
  35. 35.
    G. Lusztig, Canonical bases arising from quantized enveloping algebras. J. Am. Math. Soc. 3(2), 447–498 (1990)MathSciNetCrossRefGoogle Scholar
  36. 36.
    G. Lusztig, Canonical bases arising from quantized enveloping algebras II. Prog. Theor. Phys. Suppl. 102, 175–201 (1991)MathSciNetCrossRefGoogle Scholar
  37. 37.
    G. Lusztig, An algebraic-geometric parametrization of the canonical basis. Adv. Math. 120(1), 173–190 (1996)MathSciNetCrossRefGoogle Scholar
  38. 38.
    H. Matsumoto, Sur les sous-groupes arithmétiques des groupes semi-simples déployés. Ann. Sci. École Norm. Sup. 2(1), 1–62 (1969). MR0240214MathSciNetCrossRefGoogle Scholar
  39. 39.
    J.P. McNamara, Metaplectic Whittaker functions and crystal bases. Duke Math. J. 156(1), 1–31 (2011). MR2746386MathSciNetCrossRefGoogle Scholar
  40. 40.
    P.J. McNamara, The metaplectic Casselman-Shalika formula. Trans. Am. Math. Soc. 368(4), 2913–2937 (2016)MathSciNetCrossRefGoogle Scholar
  41. 41.
    J. Neukirch, Algebraic Number Theory, vol. 322 (Springer Science and Business Media, Berlin, 2013)zbMATHGoogle Scholar
  42. 42.
    M. Patnaik, A. Puskás, Metaplectic covers of Kac-Moody groups and Whittaker functions (2017), arXiv:1703.05265
  43. 43.
    M. Patnaik, A. Puskás, On Iwahori-Whittaker functions for metaplectic groups. Adv. Math. 313, 875–914 (2017)MathSciNetCrossRefGoogle Scholar
  44. 44.
    A. Puskás, Whittaker functions on metaplectic covers of GL(r) (2016), arXiv:1605.05400
  45. 45.
    T. Tokuyama, A generating function of strict Gel\(\prime \)fand patterns and some formulas on characters of general linear groups. J. Math. Soc. Jpn. 40(4), 671–685 (1988). MR959093 (89m:22019)MathSciNetCrossRefGoogle Scholar
  46. 46.
    K. Yamamoto, On a conjecture of Hasse concerning multiplicative relations of Gaussian sums. J. Comb. Theory 1(4), 476–489 (1966)MathSciNetCrossRefGoogle Scholar

Copyright information

© The Author(s) and the Association for Women in Mathematics 2019

Authors and Affiliations

  1. 1.Kavli Institute for the Physics and Mathematics of the UniverseKashiwaJapan

Personalised recommendations