Numerical Methods for Mean-Field and Moment Models for Pedestrian Flow

  • Raul Borsche
  • Axel Klar
  • Florian SchneiderEmail author
Part of the Modeling and Simulation in Science, Engineering and Technology book series (MSSET)


Pedestrian flow modelling has attracted the interest of a large number of scientists from different research fields, as well as planners and designers. While planning the architecture of buildings, one might be interested in the pedestrian flow around their intended design so that shops, entrances, corridors, emergency exits and seating can be placed at the best locations. Pedestrian models are helpful in improving efficiency and safety in public places such as airport terminals, train stations, theatres and shopping malls. They are not only used as a tool for understanding pedestrian dynamics at public places but also support transportation planners or managers to design timetables.



This work is supported by the German Research Foundation, DFG grant KL 1105/20-1, and by the DAAD PhD programme MIC.


  1. 1.
    D. Amadoria, M. Di Francesco, The one-dimensional Hughes model for pedestrian flow: Riemann-type solutions, Acta Mathematica Scientia, 32 (2012) 259–280.MathSciNetCrossRefGoogle Scholar
  2. 2.
    A. Aw and M. Rascle, Resurrection of second order models of traffic flow, SIAM J. Appl. Math., 60 (2000), pp. 916–938.MathSciNetCrossRefGoogle Scholar
  3. 3.
    N. Bellomo, C. Dogbe, On the Modeling of Traffic and Crowds: A Survey of Models, Speculations, and Perspectives, SIAM Review 53 (2011) 409–463.MathSciNetzbMATHGoogle Scholar
  4. 4.
    N. Bellomo, A. Bellouquid, On the modeling of crowd dynamics: Looking at the beautiful shapes of swarms, Netw. Heterog. Media, 6 (2011) 383–99.MathSciNetCrossRefGoogle Scholar
  5. 5.
    N. Bellomo, A. Bellouquid, D. Knopoff, From the microscale to collective crowd dynamics, SIAM J. Multiscale Model. Simul. 11 (2013) 943–963.MathSciNetCrossRefGoogle Scholar
  6. 6.
    N. Bellomo, C. Dogbe, On the modelling crowd dynamics from scaling to hyperbolic macroscopic models, Math. Models Methods Appl. Sci. 18 (2008) 1317–1345.MathSciNetCrossRefGoogle Scholar
  7. 7.
    N. Bellomo, B. Piccoli, A. Tosin, Modeling crowd dynamics from a complex system viewpoint, Math. Models Methods Appl. Sci. 22 (2012) 1230004.MathSciNetCrossRefGoogle Scholar
  8. 8.
    T. Belytschko, Y. Guo, W. Liu, S.P. Xiao, A unified stability analysis of meshless particle methods, Int. J. Numer. Meth. Engng. 48 (2000) 1359–1400.MathSciNetCrossRefGoogle Scholar
  9. 9.
    R. Borsche, A. Klar, S. Kühn, A. Meurer, Coupling traffic flow networks to pedestrian motion, Math. Methods Models Appl. Sci. 24 (2), 359–380, 2014MathSciNetCrossRefGoogle Scholar
  10. 10.
    T. Brunner, Forms of approximate radiation transport, SAND2002-1778, Sandia National LaboratoryGoogle Scholar
  11. 11.
    J.A. Cañizo, J.A. Carrillo, J. Rosado, A well-posedness theory in measures for some kinetic models of collective motion, Math. Models Methods Appl. Sci. 21 (2011) 515–539.MathSciNetCrossRefGoogle Scholar
  12. 12.
    J.A. Carrillo, M.R. D’Orsogna, V. Panferov, Double milling in self-propelled swarms from kinetic theory, Kinetic and Related Models 2 (2009) 363–378.MathSciNetCrossRefGoogle Scholar
  13. 13.
    J. A. Carrillo, A. Klar, S. Martin, S. Tiwari, Self-propelled interacting particle systems with roosting force, Math. Models Methods Appl. Sci. 20 (2010) 1533–1552.MathSciNetCrossRefGoogle Scholar
  14. 14.
    L. Cheng, V. Reddy, C. Fookes, and P. K. D. V. Yarlagadda, Impact of passenger group dynamics on an airport evacuation process using an agent-based model, International Conference on Computational Science and Computational Intelligence, Las Vegas, Nevada, USA (2014).Google Scholar
  15. 15.
    M.L. Chu, P. Parigi, K. Law, J.-C. Latombe, Modeling social behaviors in an evacuation simulator, Computer animation and virtual worlds, Comp. Anim. Virtual Worlds 2014; 25:375–384CrossRefGoogle Scholar
  16. 16.
    Y.L. Chuang, M.R. D’Orsogna, D. Marthaler, A.L. Bertozzi, L. Chayes, State transitions and the continuum limit for a 2D interacting, self-propelled particle system, Physica D 232 (2007) 33–47.MathSciNetCrossRefGoogle Scholar
  17. 17.
    R. Colombo, M. Garavello, M. Lecureux-Mercier, A Class of Non-Local Models for Pedestrian Traffic, Math. Models Methods Appl. Sci. 22 (2012) 1150023.MathSciNetCrossRefGoogle Scholar
  18. 18.
    R. Colombo, M. Garavello, M. Lecureux-Mercier, Non-local crowd dynamics, Comptes Rendus Mathmatique 349 (2011) 769–772.MathSciNetCrossRefGoogle Scholar
  19. 19.
    R. Colombo, M. Rosini, Pedestrian flows and non-classical shocks, Math. Models Methods Appl. Sci. 28 (2005) 1553–1567.MathSciNetCrossRefGoogle Scholar
  20. 20.
    J.F. Coulombel, F. Golse, T. Goudon, Diffusion approximation and entropy based moment closure for kinetic equations, Asymptotic Analysis, 45 (2005) 1–39.MathSciNetzbMATHGoogle Scholar
  21. 21.
    P. Degond, C. Appert-Rolland, M. Moussaid, J. Pettre, G. Theraulaz, A hierarchy of heuristic-based models of crowd dynamics, J. Stat. Phys. 152 (2013) 1033–1068.MathSciNetCrossRefGoogle Scholar
  22. 22.
    P. Degond, C. Appert-Rolland, J. Pettre, G. Theraulaz, Vision-based macroscopic pedestrian models, Kinetic and Related models, AIMS 6, 4, (2013), 809–839MathSciNetCrossRefGoogle Scholar
  23. 23.
    P. Degond, S. Motsch, Continuum limit of self-driven particles with orientation interaction, Math. Models Methods Appl. Sci. 18 (2008) 1193–1215.MathSciNetCrossRefGoogle Scholar
  24. 24.
    P. Degond, F.J. Mustieles, Approximation of diffusion equations by deterministic convections of particles, SIAM J. on Scientific and Statistical Computing 11 (1990) 293–310.MathSciNetCrossRefGoogle Scholar
  25. 25.
    G.A. Dilts, Moving-least-squares-particle hydrodynamics: I. Consistency and stability, Int. J. Numer. Meth. Engng 44 (1999) 1115–1155.MathSciNetCrossRefGoogle Scholar
  26. 26.
    R Etikyala, S Göttlich, A Klar, and S Tiwari. Particle methods for pedestrian flow models: From microscopic to nonlocal continuum models. Mathematical Models and Methods in Applied Sciences, 20(12), 2503–2523, 2014.MathSciNetCrossRefGoogle Scholar
  27. 27.
    M. Di Francesco, P.A. Markowich, J.F. Pietschmann, M.T. Wolfram, On the Hughes model for pedestrian flow: The one-dimensional case, J. Differential Equations 250 (2011) 1334–1362.MathSciNetCrossRefGoogle Scholar
  28. 28.
    R.A. Gingold, J.J. Monaghan, Smoothed Particle Hydrodynamics: theory and application to non-spherical stars, Mon. Not. Roy. Astron. Soc. 181 (1977) 375–389.CrossRefGoogle Scholar
  29. 29.
    M. Frank, H. Hensel, A. Klar, A fast and accurate moment method for the Fokker-Planck equation and applications to electron radiotherapy, SIAM Journal on Applied Mathematics 67, 582–603, 2007MathSciNetCrossRefGoogle Scholar
  30. 30.
    S.Y. Ha, E. Tadmor, From particle to kinetic and hydrodynamic descriptions of flocking, Kinetic and Related Models 1 (2008) 415–435.MathSciNetCrossRefGoogle Scholar
  31. 31.
    E.T., Hall, The Hidden Dimension. Anchor Books. ISBN 0-385-08476-5, 1966.Google Scholar
  32. 32.
    D. Helbing, Traffic and related self-driven many-particle systems, Rev. Modern Phys. 73 (2001) 1067–1141.MathSciNetCrossRefGoogle Scholar
  33. 33.
    D. Helbing, A fluid dynamic model for the movement of pedestrians, Complex Systems 6 (1992) 391–415.MathSciNetzbMATHGoogle Scholar
  34. 34.
    D. Helbing, P. Molnar, Social force model for pedestrian dynamics, Phys. Rev. E 51 (1995) 4282–4286.CrossRefGoogle Scholar
  35. 35.
    D. Helbing, I.J. Farkas, P. Molnar, T. Vicsek, Simulation of pedestrian crowds in normal and evacuation situations, in: M. Schreckenberg, S.D. Sharma (Eds.), Pedestrian and Evacuation Dynamics, Springer-Verlag (2002) 21–58.Google Scholar
  36. 36.
    R.L. Hughes, A continuum theory for the flow of pedestrians, Transp. Res. Part B: Methodological 36 (6) (2002), pp. 507–535.CrossRefGoogle Scholar
  37. 37.
    R.L. Hughes, A continuum theory for the flow of pedestrians, Transp. Res. Part B: Methodological 36 (2002) 507–535.CrossRefGoogle Scholar
  38. 38.
    R.L. Hughes, The flow of human crowds, Annu. Rev. Fluid Mech. 35 (2003) 169–182.MathSciNetCrossRefGoogle Scholar
  39. 39.
    D.P. Kennedy, J. Gläscher, J.M. Tyszka, R. Adolphs, Personal space regulation by the human amygdala. Nat Neurosci. 12, 1226–1227, 2009.CrossRefGoogle Scholar
  40. 40.
    C. v. Krüchten, A. Schadschneider, Empirical study on social groups in pedestrian evacuation dynamics, Physica A 475 (2017) 129–141Google Scholar
  41. 41.
    A. Klar, F. Schneider, O. Tse, Maximum entropy models for stochastic dynamic systems on the sphere and associated Fokker-Planck equations, Kinetic and Related Models (KRM) 7 (3), 509–529, 2014Google Scholar
  42. 42.
    A. Klar, S. Tiwari, A multi-scale meshfree particle method for macroscopic mean field interacting particle models, SIAM Multiscale Mod. Sim. 12, 3, 2014Google Scholar
  43. 43.
    A. Klar, S. Tiwari, A multi-scale particle method for mean field equations: the general case,
  44. 44.
    G. Koester, F. Treml, M. Seitz, and W. Klein, Validation of crowd models including social groups. In Ulrich Weidmann, Uwe Kirsch, and Michael Schreckenberg, editors, Pedestrian and Evacuation Dynamics 2012, 1051–1063. Springer International Publishing, 2014.Google Scholar
  45. 45.
    A.E. Kremyzas, Social Group Behavior and Path Planning, Master Thesis, University UtrechtGoogle Scholar
  46. 46.
    C.D. Levermore, Relating Eddington factors to flux limiters, J. Quant. Spectrosc. Radiat. Transf. 31 (1984) 149–160.CrossRefGoogle Scholar
  47. 47.
    H. Ling, S.C. Wong, M. Zhang, C.H. Shu, W.H.K. Lam, Revisiting Hughes dynamic continuum model for pedestrian flow and the development of an efficient solution algorithm, Transp. Res. Part B: Methodological 43 (2009) 127–141.CrossRefGoogle Scholar
  48. 48.
    N.K. Mahato, A. Klar, S. Tiwari, Particle methods for multi-group pedestrian flow, Appl. Math. Modeling 53, 447–461, 2018MathSciNetCrossRefGoogle Scholar
  49. 49.
    S. Mas-Gallic, P. Raviart, A particle method for first-order symmetric systems, Numerische Mathematik 51 (1987) 323–352.MathSciNetCrossRefGoogle Scholar
  50. 50.
    B. Maury, A. Roudneff-Chupin, F. Santambrogio, A macroscopic crowd motion model of the gradient-flow type, Math. Models Methods Appl. Sci. 20 (2010) 1787–1821.MathSciNetCrossRefGoogle Scholar
  51. 51.
    L. Müller, A. Meurer, F. Schneider, A. Klar, A numerical investigation of flux-limited approximations for pedestrian dynamics, M3AS 27 (6), 1177–1197, 2017zbMATHGoogle Scholar
  52. 52.
    A. Mogilner, L. Edelstein-Keshet, L. Bent, A. Spiros, Mutual interactions, potentials, and individual distance in a social aggregation, J. Math. Biol. 47 (2003) 353–389.MathSciNetCrossRefGoogle Scholar
  53. 53.
    M. Moussaid, N. Perozo, S. Garnier, D. Helbing, and G. Theraulaz, Walking Behaviour of Pedestrian Social Groups and Its Impact on Crowd Dynamics, PLoS ONE, 5(4), e10047(2010).CrossRefGoogle Scholar
  54. 54.
    S. Osher and J. Sethian, Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton–Jacobi formulations, J. Comput. Phys. 79 (1988) 12–49.MathSciNetCrossRefGoogle Scholar
  55. 55.
    J. Ondrej, J. Pettre, A.H. Olivier, S. Donikian, A synthetic-vision based steering approach for crowd simulation, ACM Transactions on Graphics, 29, 4, Article 123 (2010)Google Scholar
  56. 56.
    B. Piccoli, A. Tosin, Pedestrian flows in bounded domains with obstacles, Contin. Mech. Thermodyn. 21 (2009) 85–107.MathSciNetCrossRefGoogle Scholar
  57. 57.
    F. Schneider, G. Alldredge, M. Frank, A. Klar, Higher Order Mixed-Moment Approximations for the Fokker–Planck Equation in One Space Dimension, SIAM Journal on Applied Mathematics 74 (4), 1087–1114, 2014MathSciNetCrossRefGoogle Scholar
  58. 58.
    H. Spohn, Large scale dynamics of interacting particles. Texts and Monographs in Physics, Springer (1991).CrossRefGoogle Scholar
  59. 59.
    J. A. Sethian, Fast Marching Methods, SIAM Review 41 (1999) 199–235.MathSciNetCrossRefGoogle Scholar
  60. 60.
    S. Tiwari, J. Kuhnert, Modelling of two-phase flow with surface tension by Finite Point-set method (FPM), J. Comp. Appl. Math. 203 (2007) 376–386.CrossRefGoogle Scholar
  61. 61.
    S. Tiwari, J. Kuhnert, Finite pointset method based on the projection method for simulations of the incompressible Navier-Stokes equations, M. Griebel, M. A. Schweitzer (Eds.), Springer LNCSE: Meshfree Methods for Partial Differential Equations, Springer-Verlag 26 (2003) 373–387.Google Scholar
  62. 62.
    S. Tiwari, A. Klar, S. Hardt, A particle-particle hybrid method for kinetic and continuum equations, JCP 228 (2009) 7109–7124.MathSciNetCrossRefGoogle Scholar
  63. 63.
    E. Toro, Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical Introduction (Springer, 2009).CrossRefGoogle Scholar
  64. 64.
    A. Treuille, S. Cooper, Z. Popovic, Continuum crowds, in: ACM Transaction on Graphics, Proceedings of SCM SIGGRAPH 25 (2006) 1160–1168.CrossRefGoogle Scholar
  65. 65.
    J. Xi, X. Zou, Z. Chen, J. Huang, Multi-pattern of Complex Social Pedestrian Groups Transportation Research Procedia Volume 2, 2014, 60–68Google Scholar
  66. 66.
    H.P. Zhu, A.B. Yu, Averaging method of granular materials, Phys. Rev. E 66 (2002) 021302.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.TU KaiserslauternKaiserslauternGermany

Personalised recommendations