Advertisement

Measure-Theoretic Models for Crowd Dynamics

  • Benedetto Piccoli
  • Francesco RossiEmail author
Chapter
Part of the Modeling and Simulation in Science, Engineering and Technology book series (MSSET)

Abstract

This chapter revises some modeling, analysis, and simulation contributions for crowd dynamics using time-evolving measures. Two key features are strictly related to the use of measures: on one side, this setting permits to generalize both microscopic and macroscopic crowd models. On the other side, it allows an easy description of multi-scale crowd models, e.g., with leaders and followers. The main analytical tool for studying measure evolution is to endow the space of measures with the Wasserstein distance.

This chapter also describes our recent contributions about crowd modeling with time-varying total mass. This requires to use a more flexible metric tool in the space of measures, that we called generalized Wasserstein distance.

References

  1. 1.
    G. Albi, M. Bongini, F. Rossi, and F. Solombrino. Leader formation with mean-field birth and death models. in preparation.Google Scholar
  2. 2.
    G. Arechavaleta, J.-P. Laumond, H. Hicheur, and A. Berthoz. An optimality principle governing human walking. IEEE Transactions on Robotics, 24:5–14, 2008.CrossRefGoogle Scholar
  3. 3.
    N. Bellomo and A. Bellouquid. On the modeling of crowd dynamics: Looking at the beautiful shapes of swarms. Networks and Heterogeneous Media, 6:383–399, 2011.MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    N. Bellomo, D. Clarke, L. Gibelli, P. Townsend, and B. Vreugdenhil. Human behaviours in evacuation crowd dynamics: From modelling to big data toward crisis management. Physics of Life Reviews, 18:1–21, 2016.CrossRefGoogle Scholar
  5. 5.
    N. Bellomo, B. Piccoli, and A. Tosin. Modeling crowd dynamics from a complex system viewpoint. Mathematical models and methods in applied sciences, 22(supp02):1230004, 2012.MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    N. Bellomo and C. Dogbe. On the modeling of traffic and crowds: a survey of models, speculations, and perspectives. SIAM Rev., 53(3):409–463, 2011.MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    N. Bellomo and L. Gibelli. Toward a mathematical theory of behavioral-social dynamics for pedestrian crowds. Mathematical Models and Methods in Applied Sciences, 25(13):2417–2437, 2015.MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    M. Bongini, M. Fornasier, F. Rossi, and F. Solombrino. Mean-Field Pontryagin Maximum Principle. Journal of Optimization Theory and Applications, 175(1):1–38, 2017.MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    S. Camazine, J. Deneubourg, N. Franks, J. Sneyd, G. Theraulaz, and E. Bonabeau. Self organization in biological systems. Princeton University Press, 2003.Google Scholar
  10. 10.
    M. Caponigro, B. Piccoli, F. Rossi, and E. Trélat. Mean-field sparse Jurdjevic-Quinn control. M3AS: Math. Models Meth. Appl. Sc., 27(7):1223–1253, 2017.MathSciNetzbMATHGoogle Scholar
  11. 11.
    J. A. Carrillo, M. Di Francesco, A. Figalli, T. Laurent, and D. Slepčev. Global-in-time weak measure solutions and finite-time aggregation for nonlocal interaction equations. Duke Math. J., 156(2):229–271, 02 2011.MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    J. A. Carrillo, M. Fornasier, G. Toscani, and F. Vecil. Mathematical Modeling of Collective Behavior in Socio-Economic and Life Sciences, chapter Particle, kinetic, and hydrodynamic models of swarming, pages 297–336. Birkhäuser Boston, Boston, 2010.zbMATHCrossRefGoogle Scholar
  13. 13.
    C. Cercignani, R. Illner, and M. Pulvirenti. The mathematical theory of dilute gases, volume 106 of Applied Mathematical Sciences. Springer-Verlag, New York, 1994.zbMATHGoogle Scholar
  14. 14.
    Y. Chitour, F. Jean, and P. Mason. Optimal control models of goal-oriented human locomotion. SIAM Journal on Control and Optimization, 50(1):147–170, 2012.MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    L. Chizat, G. Peyré, B. Schmitzer, and F.-X. Vialard. An interpolating distance between optimal transport and Fisher–Rao metrics. Foundations of Computational Mathematics, 18(1):1–44, 2018.MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    E. Cristiani, P. Frasca, and B. Piccoli. Effects of anisotropic interactions on the structure of animal groups. Journal of mathematical biology, 62(4):569–588, 2011.MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    E. Cristiani, B. Piccoli, and A. Tosin. Multiscale modeling of granular flows with application to crowd dynamics. Multiscale Model. Simul., 9(1):155–182, 2011.MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    F. Cucker and S. Smale. Emergent behavior in flocks. IEEE Trans. Automat. Control, 52(5):852–862, 2007.MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    G. Di Marzo Serugendo, M.-P. Gleizes, and A. Karageorgos. Self-organization in multi-agent systems. The Knowledge Engineering Review, 20(2):165–189, 2005.CrossRefGoogle Scholar
  20. 20.
    B. Düring, P. Markowich, J.-F. Pietschmann, and M.-T. Wolfram. Boltzmann and Fokker–Planck equations modelling opinion formation in the presence of strong leaders. In Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, page rspa20090239. The Royal Society, 2009.Google Scholar
  21. 21.
    L. C. Evans and R. F. Gariepy. Measure theory and fine properties of functions. CRC press, 1991.Google Scholar
  22. 22.
    F. Farina, D. Fontanelli, A. Garulli, A. Giannitrapani, and D. Prattichizzo. When Helbing meets Laumond: The Headed Social Force Model. In 2016 IEEE 55th Conference on Decision and Control (CDC), pages 3548–3553, Dec 2016.Google Scholar
  23. 23.
    I. Giardina. Collective behavior in animal groups: theoretical models and empirical studies. Human Frontier Science Program Journal, (205–219), 2008.CrossRefGoogle Scholar
  24. 24.
    P. Glensdorf and I. Prigozhin. Thermodynamic Theory of Structure, Stability and Fluctuations. Wiley Interscience, 1971.Google Scholar
  25. 25.
    S.-Y. Ha and E. Tadmor. From particle to kinetic and hydrodynamic descriptions of flocking. Kinetic & Related Models, 1(3):415–435, 2008.MathSciNetzbMATHCrossRefGoogle Scholar
  26. 26.
    J. Haskovec. Flocking dynamics and mean-field limit in the Cucker–Smale-type model with topological interactions. Physica D: Nonlinear Phenomena, 261:42–51, 2013.MathSciNetzbMATHCrossRefGoogle Scholar
  27. 27.
    D. Helbing and P. Molnár. Social force model for pedestrian dynamics. Physical Review E, 51(5):4282–4286, 1995.CrossRefGoogle Scholar
  28. 28.
    S. Kondratyev, L. Monsaingeon, and D. Vorotnikov. A new optimal transport distance on the space of finite Radon measures. Adv. Differential Equations, 21(11-12):1117–1164, 2016.MathSciNetzbMATHGoogle Scholar
  29. 29.
    P. Krugman. The Self Organizing Economy. Blackwell Publisher, 1995.Google Scholar
  30. 30.
    J. Lehn. Supramolecular chemistry—scope and perspectives molecules, supermolecules, and molecular devices (nobel lecture). Angewandte Chemie International Edition in English, 27(1):89–112, 1988.CrossRefGoogle Scholar
  31. 31.
    K. Lewin. Field Theory in Social Science. Harper & Brothers, 1951.Google Scholar
  32. 32.
    M. Liero, A. Mielke, and G. Savaré. Optimal transport in competition with reaction: the Hellinger-Kantorovich distance and geodesic curves. SIAM J. Math. Anal., 48(4):2869–2911, 2016.MathSciNetzbMATHCrossRefGoogle Scholar
  33. 33.
    B. Maury and J. Venel. A discrete contact model for crowd motion. ESAIM: Mathematical Modelling and Numerical Analysis, 45(1):145–168, 2011.MathSciNetzbMATHCrossRefGoogle Scholar
  34. 34.
    A. Muntean, J. Rademacher, and A. Zagaris. Macroscopic and large scale phenomena: coarse graining, mean field limits and ergodicity. Springer, 2016.Google Scholar
  35. 35.
    H. Neunzert. An introduction to the nonlinear Boltzmann-Vlasov equation. In C. Cercignani, editor, Kinetic Theories and the Boltzmann Equation, pages 60–110, Berlin, Heidelberg, 1984. Springer Berlin Heidelberg.CrossRefGoogle Scholar
  36. 36.
    L. Pallottino, V. Scordio, E. Frazzoli, and A. Bicchi. Decentralized cooperative policy for conflict resolution in multivehicle systems. IEEE Transactions on Robotics, 23(6):1170–1183, 1998.CrossRefGoogle Scholar
  37. 37.
    L. Perea, P. Elosegui, and G. Gómez. Extension of the Cucker-Smale Control Law to Space Flight Formations. Journal of Guidance, Control, and Dynamics, 32:527–537, 2009.CrossRefGoogle Scholar
  38. 38.
    B. Piccoli and F. Rossi. Transport equation with nonlocal velocity in Wasserstein spaces: convergence of numerical schemes. Acta Appl. Math., 124:73–105, 2013.MathSciNetzbMATHCrossRefGoogle Scholar
  39. 39.
    B. Piccoli and F. Rossi. Generalized Wasserstein distance and its application to transport equations with source. Arch. Ration. Mech. Anal., 211(1):335–358, 2014.MathSciNetzbMATHCrossRefGoogle Scholar
  40. 40.
    B. Piccoli and F. Rossi. On properties of the generalized Wasserstein distance. Arch. Ration. Mech. Anal., 222(3):1339–1365, 2016.MathSciNetzbMATHCrossRefGoogle Scholar
  41. 41.
    B. Piccoli, F. Rossi, and M. Tournus. A norm for signed measures. Application to non local transport equation with source term. preprint, hal-01665244, Dec 2017.Google Scholar
  42. 42.
    B. Piccoli and A. Tosin. Time-evolving measures and macroscopic modeling of pedestrian flow. Archive for Rational Mechanics and Analysis, 199(3):707–738, 2011.MathSciNetzbMATHCrossRefGoogle Scholar
  43. 43.
    S. T. Rachev. Probability metrics and the stability of stochastic models, volume 269. John Wiley & Son Ltd, 1991.Google Scholar
  44. 44.
    C. Tomlin, G. Pappas, and S. Sastry. Conflict resolution for air traffic management: A study in multiagent hybrid systems. IEEE Transactions on automatic control, 43(4):509–521, 1998.MathSciNetzbMATHCrossRefGoogle Scholar
  45. 45.
    C. Villani. Topics in optimal transportation, volume 58 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, 2003.zbMATHGoogle Scholar
  46. 46.
    N. Wiener. The Mathematics of Self-Organising Systems. Recent Developments in Information and Decision Processes. Macmillan, 1962.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Department of Mathematical SciencesRutgers University – CamdenCamdenUSA
  2. 2.Department of Mathematics “Tullio Levi–Civita”University of PadovaPaduaItaly

Personalised recommendations