Advertisement

Behavioral Human Crowds

  • Nicola Bellomo
  • Livio GibelliEmail author
Chapter
Part of the Modeling and Simulation in Science, Engineering and Technology book series (MSSET)

Abstract

This chapter provides an introduction to the contents of Bellomo and Gibelli (Crowd dynamics, volume 1 – theory, models, and safety problems. Modeling and simulation in science, engineering, and technology. Birkhäuser, New York, 2018) and a general critical analysis on crowd modeling. The presentation is organized in three parts: firstly, a general framework and rationale toward the modeling and simulations of human crowds are proposed; subsequently the contents of Chaps. 2, 3,  4 ,  5 ,  6 ,  7 ,  8 and  9 are summarized by referring to the existing literature; finally, by taking advantage of the contents of the whole book, some speculations are proposed on possible research perspectives. Five key problems are presented, and hints are given to tackle them within a multiscale vision which appears to be the most looking forward idea to be pursued in research projects.

References

  1. 1.
    G. Ajmone Marsan, N. Bellomo, and L. Gibelli, Stochastic evolutionary differential games toward a systems theory of behavioral social dynamics, Math. Models Methods Appl. Sci., 26, 1051–1093, (2016).MathSciNetCrossRefGoogle Scholar
  2. 2.
    G. Albi, M. Bongini, E. Cristiano, and D. Kalise, Invisible control of self-organizing agents leaving unknown environments, Siam J. Appl. Math., 76(4), 1683–1710, (2016).MathSciNetCrossRefGoogle Scholar
  3. 3.
    B. Andreianov, C. Donadello, U. Razafison and M. D. Rosini, One-dimensional conservation laws with non-local point constraints on the flux, Chapter 5 in Crowd Dynamics, Volume 1 - Theory, Models, and Safety Problems, Modeling and Simulation in Science, Engineering, and Technology, Birkhäuser, New York, (2018).Google Scholar
  4. 4.
    R. Bailo, J. A. Carrillo, and P. Degond, Pedestrian models based on rational behaviour, Chapter 9 in Crowd Dynamics, Volume 1 - Theory, Models, and Safety Problems, Modeling and Simulation in Science, Engineering, and Technology, Birkhäuser, New York, (2018).Google Scholar
  5. 5.
    P. Ball, Why Society is a Complex Matter, Springer-Verlag, Heidelberg, (2012).CrossRefGoogle Scholar
  6. 6.
    N. Bellomo and A. Bellouquid, On multiscale models of pedestrian crowds from mesoscopic to macroscopic, Comm. Math. Sciences, 13(7), 1649–1664, (2015).MathSciNetCrossRefGoogle Scholar
  7. 7.
    N. Bellomo, A. Bellouquid, L. Gibelli, and N. Outada, A Quest Towards a Mathematical Theory of Living Systems, Birkhäuser, New York, (2017).CrossRefGoogle Scholar
  8. 8.
    N. Bellomo, A. Bellouquid, and D. Knopoff, From the microscale to collective crowd dynamics, Multiscale Model. Simul., 11(3), 943–963, (2013).MathSciNetCrossRefGoogle Scholar
  9. 9.
    N. Bellomo, D. Clarke, L. Gibelli, P. Townsend, and B.J. Vreugdenhil, Human behaviours in evacuation crowd dynamics: From modeling to “big data” toward crisis management, Phys. Life Rev., 18, 1–21, (2016).CrossRefGoogle Scholar
  10. 10.
    N. Bellomo, and L. Gibelli, Toward a mathematical theory of behavioral-social dynamics for pedestrian crowds, Math. Models Methods Appl. Sci., 25(13), 2417–2437, (2015).MathSciNetCrossRefGoogle Scholar
  11. 11.
    N. Bellomo and L. Gibelli, Behavioral crowds: Modeling and Monte Carlo simulations toward validation, Computers & Fluids, 141, 13–21, (2016).MathSciNetCrossRefGoogle Scholar
  12. 12.
    N. Bellomo and L. Gibelli, Crowd Dynamics, Volume 1 - Theory, Models, and Safety Problems, Modeling and Simulation in Science, Engineering, and Technology, Birkhäuser, New York, (2018).Google Scholar
  13. 13.
    N. Bellomo, L. Gibelli, and N. Outada, On the interplay between behavioral dynamics and social interactions in human crowds, Kinet. Relat. Mod., 12(2), 397–409, (2019).CrossRefGoogle Scholar
  14. 14.
    A. Bellouquid and N. Chouhad, Kinetic models of chemotaxis towards the diffusive limit: asymptotic analysis, Math. Models Methods Appl. Sci., 39, 3136–3151, (2016).MathSciNetCrossRefGoogle Scholar
  15. 15.
    A.L. Bertozzi, J. Rosado, M.B. Short, and L. Wang, Contagion shocks in one dimension, J. Stat. Phys., 158, 647–664, (2015).MathSciNetCrossRefGoogle Scholar
  16. 16.
    G.A. Bird, Molecular Gas Dynamics and the Direct Simulation of Gas Flows, Oxford University Press, (1994).Google Scholar
  17. 17.
    R. Borsche, A. Klar, and F. Schneider, Numerical methods for mean-field and moment models for pedestrian flow, Chapter 7 in Crowd Dynamics, Volume 1 - Theory, Models, and Safety Problems, Modeling and Simulation in Science, Engineering, and Technology, Birkhäuser, New York, (2018).Google Scholar
  18. 18.
    M. Burger, P. Markowich, J.F. Pietschmann, Continuous limit of a crowd motion and herding Model: analysis and numerical simulations, Kinet. Rel. Models, 4(4), 1025–1047, (2011).MathSciNetCrossRefGoogle Scholar
  19. 19.
    D. Burini and N. Chouhad, Hilbert method toward a multiscale analysis from kinetic to macroscopic models for active particles, Math. Models Methods Appl. Sci., 27, 1327–1353, (2017).MathSciNetCrossRefGoogle Scholar
  20. 20.
    D. Burini, S. De Lillo, and L. Gibelli, Stochastic differential “nonlinear” games modeling collective learning dynamics, Phys. Life Rev., 16, 123–139, (2016).CrossRefGoogle Scholar
  21. 21.
    J.-A. Carrillo, S. Martin, and M.-T. Wolfram An improved version of the Hughes model for pedestrian flow Math. Model. Methods Appl. Sci., 26(04), 671–697, (2016).MathSciNetCrossRefGoogle Scholar
  22. 22.
    C. Cercignani, R. Illner, and M. Pulvirenti, The Kinetic Theory of a Diluted Gas, Springer, Heidelberg, New York, (1993).Google Scholar
  23. 23.
    M. Colangeli, A. Muntean, O. Richardson and T. Thieu, Modelling interactions between active and passive agents moving through heterogeneous environments, Chapter 8 in Crowd Dynamics, Volume 1 - Theory, Models, and Safety Problems, Modeling and Simulation in Science, Engineering, and Technology, Birkhäuser, New York, (2018).Google Scholar
  24. 24.
    E. Cristiani, B. Piccoli, and A. Tosin, Multiscale Modeling of Pedestrian Dynamics, Springer, (2014).Google Scholar
  25. 25.
    E. Cristiani, F.S. Priuli, and A. Tosin, Modeling rationality to control self-organization of crowds: an environmental approach, SIAM J. Appl. Math., 75(2), 605–629, (2015).MathSciNetCrossRefGoogle Scholar
  26. 26.
    A. Corbetta, A. Mountean, and K. Vafayi, Parameter estimation of social forces in pedestrian dynamics models via probabilistic method, Math. Biosci. Eng., 12, 337–356, (2015).MathSciNetzbMATHGoogle Scholar
  27. 27.
    P. Degond, C. Appert-Rolland, M. Moussaid, J. Pettré, and G. Theraulaz, A hierarchy of heuristic-based models of crowd dynamics, J. Stat. Phys., 152, 1033–1068, (2013).MathSciNetCrossRefGoogle Scholar
  28. 28.
    P. Degond, C. Appert-Rolland, J. Pettré, and G. Theraulaz, Vision based macroscopic pedestrian models, Kinetic Related Models, 6, 809–839, (2013).MathSciNetCrossRefGoogle Scholar
  29. 29.
    J.-M. Epstein J.M., Modeling civil violence: An agent based computational approach, Proc. Nat. Acad. Sci., 99, 7243–7250, (2002).CrossRefGoogle Scholar
  30. 30.
    Z. Fu, L. Luo, Y. Yang, Y. Zhuang, P. Zhang, L. Yang, H. Yang, J. Ma, K. Zhu, and Y. Li, Effect of speed matching on fundamental diagram of pedestrian flow, Physica A, 458, 31–42, (2016).CrossRefGoogle Scholar
  31. 31.
    H. Gintis, Game Theory Evolving, 2nd Ed., Princeton University Press, Princeton NJ, (2009).Google Scholar
  32. 32.
    M. Haghani, and M. Sarvi, Social dynamics in emergency evacuations: Disentangling crowds attraction and repulsion effects, Physica A, 475, 24–34, (2017).CrossRefGoogle Scholar
  33. 33.
    D. Helbing, Traffic and related self-driven many-particle systems, Rev. Modern Phys., 73, 1067–1141, (2001).MathSciNetCrossRefGoogle Scholar
  34. 34.
    D. Helbing and P. Molnár, Social force model for pedestrian dynamics Phys. Rev. E, 51, 4282–4286, (1995).CrossRefGoogle Scholar
  35. 35.
    D. Helbing, P. Molnár, I.-J. Farkas, and K. Bolay, Self-organizing pedestrian movement, Environ. Plan. B Plan. Des., 28(3), 361–383, (2001).CrossRefGoogle Scholar
  36. 36.
    D. Helbing D. and A. Johansson, Pedestrian crowd and evacuation dynamics, Enciclopedia of Complexity and System Science, Springer, 6476–6495, (2009).Google Scholar
  37. 37.
    D. Helbing, A. Johansson, and H.-Z. Al-Abideen, Dynamics of crowd disasters: An empirical study, Phys. Rev. E, 75, paper no. 046109, (2007).Google Scholar
  38. 38.
    D. Hilbert, Mathematical problems, Bull. Amer. Math. Soc., 8(10) (1902), 437–479.MathSciNetCrossRefGoogle Scholar
  39. 39.
    S.P. Hoogendoorn, F. van Wageningen-Kessels, W. Daamen, and D.C. Duives, Continuum modelling of pedestrian flows: From microscopic principles to self-organised macroscopic phenomena, Physica A, 416, 684–694, (2014).CrossRefGoogle Scholar
  40. 40.
    R. L. Hughes A continuum theory for the flow of pedestrians, Transp. Research B, 36, 507–536, (2002).CrossRefGoogle Scholar
  41. 41.
    R.L. Hughes, The flow of human crowds, Annu. Rev. Fluid Mech., 35, 169–182, (2003).MathSciNetCrossRefGoogle Scholar
  42. 42.
    M. Kinateder, T. D. Wirth, and W. H. Warren, Crowd Dynamics in Virtual Reality, Chapter 2 in Crowd Dynamics, Volume 1 - Theory, Models, and Safety Problems, Modeling and Simulation in Science, Engineering, and Technology, Birkhäuser, New York, (2018).Google Scholar
  43. 43.
    A. Lachapelle, M.T. Wolfram, On a mean field game approach modeling congestion and aversion in pedestrian crowds Transportation Research B, 45, 1572–1589, (2011).Google Scholar
  44. 44.
    F. Martinez-Gil, M. Lozano, I. Garcia-Fernández and F. Fernández, Modeling, evaluation and scale on artificial pedestrians: A literature review, ACM Computing Surveys, In press (2018).Google Scholar
  45. 45.
    B. Maury, and J. Venel A discrete contact model for crowd motion, ESAIM: M2AN, 45, 145–168, (2011).MathSciNetCrossRefGoogle Scholar
  46. 46.
    M. Moussaïd, E.-G. Guillot, M. Moreau, J. Fehrenbach, O. Chabiron, S. Lemercier, J. Pettré, C. Appert-Rolland, P. Degond, and G. Theraulaz, Traffic instabilities in self-organized pedestrian crowds PLoS Comput. Biol., 8(3), (2012).CrossRefGoogle Scholar
  47. 47.
    M. Moussaïd, D. Helbing, S. Garnier, A. Johansson, M. Combe, and G. Theraulaz, Experimental study of the behavioural mechanisms underlying self-organization in human crowds, Proc. Roy. Soc. B, 276, 2755–2762, (2009).CrossRefGoogle Scholar
  48. 48.
    M. Moussaïd and G. Theraulaz, Comment les piétons marchent dans la foule. La Recherche, 450, 56–59, (2011).Google Scholar
  49. 49.
    L. Pareschi and G. Toscani, Interacting Multiagent Systems: Kinetic Equations and Monte Carlo Methods Oxford University Press, Oxford, (2014).Google Scholar
  50. 50.
    B. Piccoli and F. Rossi, Measure-theoretic models for crowd dynamics, Chapter 6 in Crowd Dynamics, Volume 1 - Theory, Models, and Safety Problems, Modeling and Simulation in Science, Engineering, and Technology, Birkhäuser, New York, (2018).Google Scholar
  51. 51.
    F. Ronchi, F. Nieto Uriz, X. Criel, and P. Reilly, Modelling large-scale evacuation of music festival. Fire Safety, 5, 11–19, (2016).CrossRefGoogle Scholar
  52. 52.
    E. Ronchi and D. Nilsson Pedestrian Movement in Smoke: Theory, Data and Modelling Approaches, Chapter 3 in Crowd Dynamics, Volume 1 - Theory, Models, and Safety Problems, Modeling and Simulation in Science, Engineering, and Technology, Birkhäuser, New York, (2018).Google Scholar
  53. 53.
    L. Saint-Raymond, Hydrodynamic limits of the Boltzmann equation, Lecture Notes in Mathematics n.1971, Springer, Berlin, (2009).Google Scholar
  54. 54.
    A. Schadschneider, M. Chraibi, A. Seyfried, A. Tordeux, and J. Zhang, Pedestrian Dynamics - From Empirical Results to Modeling, Chapter 4 in Crowd Dynamics, Volume 1 - Theory, Models, and Safety Problems, Modeling and Simulation in Science, Engineering, and Technology, Birkhäuser, New York, (2018).Google Scholar
  55. 55.
    A. Schadschneider, W. Klingsch, H. Kläpfel, T. Kretz, C. Rogsch, and A. Seyfried, Evacuation Dynamics: Empirical Results, Modeling and Applications, Encyclopedia of Complexity and System Scence, 3142–3176, (2009).Google Scholar
  56. 56.
    A. Schadschneider and A. Seyfried, Empirical results for pedestrian dynamics and their implications for modeling. Netw. Heterog. Media, 6, 545–560, (2011).MathSciNetCrossRefGoogle Scholar
  57. 57.
    A. Seyfried, B. Steffen, W. Klingsch, and M. Boltes, The fundamental diagram of pedestrian movement revisited, J. Stat. Mech.: Theory and Experiments, 360, 232–238, (2006).Google Scholar
  58. 58.
    H. Vermuyten, J. Belien, L. De Boeck, G. Reniers, and T. Wauters, A review of optimisation models for pedestrian evacuation and design problems, Safety Science, 87, 167–178, (2016).CrossRefGoogle Scholar
  59. 59.
    L. Wang, M.B. Short, and A.L. Bertozzi, Efficient numerical methods for multiscale crowd dynamics with emotional contagion, Math. Models Methods Appl. Sci., 27, 205–230, (2017).MathSciNetCrossRefGoogle Scholar
  60. 60.
    N. Wijermans, C. Conrado, M. van Steen, C. Martella, and J.-L. Li, A landscape of crowd management support: An integrative approach, Safety Science, 86, 142–164, (2016).CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Department of Mathematical SciencesPolitecnico of TorinoTorinoItaly
  2. 2.School of EngineeringUniversity of EdinburghEdinburghUK

Personalised recommendations