Micro- and Nano-patterned Hydrogels Fabricated by Taking Advantage of Surface Instabilities

  • C. M. González-Henríquez
  • M. A. Sarabia VallejosEmail author
  • Juan Rodríguez-Hernández


In this chapter, several methodologies used to generate surface instabilities on hydrogel films are reviewed. The main advantage of surface instability usage for generating nano- and micro-patterned surfaces is their low cost, ease of fabrication, and the possibility of methodology scalement for industrial processes. Surfaces instabilities are generated by a mismatch of forces or stresses between the different strata of a film. Their inhomogeneous contraction or dilatation could eventually generate out-of-plane deformations; the shape and distribution of the patterns formed on top can be controlled according to the variation of the parameters used for their generation. Particularly, hydrogels have a remarkable importance in biomedical applications due to their high biocompatibility, low toxicity, and facile chemical or physical alteration, being able to be used as a base for shape memory devices, pH- or thermoresponsive materials, or antibacterial/antibiofouling devices. In the final section of this chapter, several applications of nano- or micro-patterned surfaces generated on hydrogels are mentioned and explained.


Surface instabilities Hydrogels Nano- and micro-patterns Smart polymers Biocompatible materials 



The authors acknowledge financial support given by FONDECYT Grant N° 1170209. M.A. Sarabia acknowledges the financial support given by CONICYT through the doctoral program Scholarship Grant. J. Rodriguez-Hernandez acknowledges financial support from Ministerio de Economia y Competitividad (MINECO) (Project MAT2016-78437-R, FEDER-EU) and finally VRAC Grant Number L216-04 of Universidad Tecnológica Metropolitana.


  1. 1.
    M. Malmsten, Antimicrobial and antiviral hydrogels. Soft Matter 7, 8725 (2011)CrossRefGoogle Scholar
  2. 2.
    C.M. Gonzalez-Henriquez, M.A. Sarabia-Vallejos, J. Rodríguez-Hernández, Advances in the fabrication of antimicrobial hydrogels for biomedical applications. Materials (Basel) 10, 232 (2017)CrossRefGoogle Scholar
  3. 3.
    M.W. Tibbitt, K.S. Anseth, Hydrogels as extracellular matrix mimics for 3D cell culture. Biotechnol. Bioeng. 103, 655–663 (2009)CrossRefGoogle Scholar
  4. 4.
    N.A. Peppas, J.Z. Hilt, A. Khademhosseini, et al., Hydrogels in biology and medicine: From molecular principles to Bionanotechnology. Adv. Mater. 18, 1345–1360 (2006)CrossRefGoogle Scholar
  5. 5.
    A.S. Veiga, J.P. Schneider, Antimicrobial hydrogels for the treatment of infection. Biopolymers 100, 637–644 (2013)CrossRefGoogle Scholar
  6. 6.
    D. Seliktar, Designing cell-compatible hydrogels for biomedical applications. Science 336, 1124–1128 (2012)CrossRefGoogle Scholar
  7. 7.
    R. Censi, P. Di Martino, T. Vermonden, et al., Hydrogels for protein delivery in tissue engineering. J. Control. Release 161, 680–692 (2012)CrossRefGoogle Scholar
  8. 8.
    H.F. Chan, R. Zhao, G.A. Parada, et al., Folding artificial mucosa with cell-laden hydrogels guided by mechanics models. Proc. Natl. Acad. Sci. 115, 7503–7508 (2018)CrossRefGoogle Scholar
  9. 9.
    J. Rodríguez-Hernández, Wrinkled interfaces: Taking advantage of surface instabilities to pattern polymer surfaces. Prog. Polym. Sci. 42, 1–41 (2015)CrossRefGoogle Scholar
  10. 10.
    X. Huang, B. Li, W. Hong, et al., Effects of tension-compression asymmetry on the surface wrinkling of film-substrate systems. J. Mech. Phys. Solids 94, 88–104 (2016)CrossRefGoogle Scholar
  11. 11.
    Z. Zhou, Y. Li, T.F. Guo, et al., Surface instability of bilayer hydrogel subjected to both compression and solvent absorption. Polymers (Basel). 8, 1–15 (2018)Google Scholar
  12. 12.
    K. Subramani, Fabrication of hydrogel micropatterns by soft photolithography, in Emerging Nanotechnologies for Manufacturing, (Elsevier, Oxford, 2015), pp. 279–293CrossRefGoogle Scholar
  13. 13.
    M.J. Yin, M. Yao, S. Gao, et al., Rapid 3D patterning of Poly(Acrylic Acid) ionic hydrogel for miniature PH sensors. Adv. Mater. 28, 1394–1399 (2016)CrossRefGoogle Scholar
  14. 14.
    G.S. Jeong, D.Y. No, J. Lee, et al., Viscoelastic lithography for fabricating self-organizing soft micro-honeycomb structures with ultra-high aspect ratios. Nat. Commun. 7, 1–9 (2016)Google Scholar
  15. 15.
    G. Mallikarjunachari, P. Ghosh, Nanomechanical study of polymer-polymer thin film interface under applied service conditions. J. Appl. Polym. Sci. 133, 1–13 (2016)CrossRefGoogle Scholar
  16. 16.
    A. Rath, S. Mathesan, P. Ghosh, Nanomechanical characterization and molecular mechanism study of nanoparticle reinforced and cross-linked Chitosan biopolymer. J. Mech. Behav. Biomed. Mater. 55, 42–52 (2015)CrossRefGoogle Scholar
  17. 17.
    G. Mallikarjunachari, P. Ghosh, Analysis of strength and response of polymer nano thin film interfaces applying nanoindentation and nanoscratch techniques. Polym. (United Kingdom) 90, 53–66 (2016)Google Scholar
  18. 18.
    G. Mallikarjunachari, P. Ghosh, Application of nanomechanical response of wrinkled thin films in surface feature generation. Eur. Polym. J. 89, 524–538 (2017)CrossRefGoogle Scholar
  19. 19.
    F. Girard, M. Antoni, K. Sefiane, On the effect of marangoni flow on evaporation rates of heated water drops. Langmuir 24, 9207–9210 (2008)CrossRefGoogle Scholar
  20. 20.
    J.S. Arora, J.C. Cremaldi, M.K. Holleran, et al., Hydrogel inverse replicas of breath figures exhibit superoleophobicity due to patterned surface roughness. Langmuir 32, 1009–1017 (2016)CrossRefGoogle Scholar
  21. 21.
    A. Gallardo, N. Luján, H. Reinecke, et al., Chemical and topographical modification of polycarbonate surfaces through diffusion/photocuring processes of hydrogel precursors based on Vinylpyrrolidone. Langmuir 2017, acs.langmuir.6b04143.Google Scholar
  22. 22.
    H. Izawa, Preparation of biobased wrinkled surfaces via lignification-mimetic reactions and drying: A new approach for developing surface wrinkling. Polym. J. 49, 759–765 (2017)CrossRefGoogle Scholar
  23. 23.
    J. Gu, X. Li, H. Ma, et al., One-step synthesis of PHEMA hydrogel films capable of generating highly ordered wrinkling patterns. Polymer (Guildf). 110, 114–123 (2017)CrossRefGoogle Scholar
  24. 24.
    M. Kato, Y. Tsuboi, A. Kikuchi, et al., Hydrogel adhesion with wrinkle formation by spatial control of polymer networks. J. Phys. Chem. B 120, 5042–5046 (2016)CrossRefGoogle Scholar
  25. 25.
    Y. Tokudome, H. Kuniwaki, K. Suzuki, et al., Thermoresponsive wrinkles on hydrogels for soft actuators. Adv. Mater. Interfaces 3, 1–5 (2016)Google Scholar
  26. 26.
    C.M. Gonzalez-Henriquez, D.H. Sagredo-Oyarce, M.A. Sarabia-Vallejos, et al., Fabrication of micro and sub-micrometer wrinkled hydrogel surfaces through thermal and photocrosslinking processes. Polymer (Guildf). 101, 24–33 (2016)CrossRefGoogle Scholar
  27. 27.
    C.M. González-Henríquez, P.A. Alfaro-Cerda, D.F. Veliz-Silva, et al., Micro-wrinkled hydrogel patterned surfaces using PH-sensitive monomers. Appl. Surf. Sci. 457, 902–913 (2018)CrossRefGoogle Scholar
  28. 28.
    C.M. González-Henríquez, G.D.C. Pizarro, M.A. Sarabia-Vallejos, et al., Thin and ordered hydrogel films deposited through electrospinning technique; a simple and efficient support for organic bilayers. Biochim. Biophys. Acta Biomembr. 1848, 2126–2137 (2015)CrossRefGoogle Scholar
  29. 29.
    C.M. Gonzalez-Henriquez, G. Pizarro, C. del, E.N. Córdova-Alarcón, et al., Artificial biomembranes stabilized over spin coated hydrogel scaffolds. Crosslinking agent nature induces wrinkled or flat surfaces on the hydrogel. Chem. Phys. Lipids 196, 13–23 (2016)CrossRefGoogle Scholar
  30. 30.
    C.M. Gonzalez-Henriquez, M.A. Sarabia-Vallejos, Electrospinning deposition of hydrogel fibers used as Scaffold for biomembranes. Thermal stability of DPPC corroborated by Ellipsometry. Chem. Phys. Lipids 190, 51–60 (2015)CrossRefGoogle Scholar
  31. 31.
    M. Guvendiren, J.A. Burdick, The control of stem cell morphology and differentiation by hydrogel surface wrinkles. Biomaterials 31, 6511–6518 (2010)CrossRefGoogle Scholar
  32. 32.
    P. Viswanathan, M. Guvendiren, W. Chua, et al., Mimicking the topography of the epidermal-dermal interface with Elastomer substrates. Integr. Biol. (Camb). 8, 21–29 (2016)CrossRefGoogle Scholar
  33. 33.
    M. Guvendiren, J.A. Burdick, Stem cell response to spatially and temporally displayed and reversible surface topography. Adv. Healthc. Mater. 2, 155–164 (2013)CrossRefGoogle Scholar
  34. 34.
    A. Paul, M. Stührenberg, S. Chen, et al., Micro- and nano-patterned Elastin-like polypeptide hydrogels for stem cell culture. Soft Matter 13, 5665–5675 (2017)CrossRefGoogle Scholar
  35. 35.
    Z. Zhao, J. Gu, Y. Zhao, et al., Hydrogel thin film with swelling-induced wrinkling patterns for high-throughput generation of multicellular spheroids. Biomacromolecules 15, 3306–3312 (2014)CrossRefGoogle Scholar
  36. 36.
    H.S. Shin, Y.M. Kook, H.J. Hong, et al., Functional spheroid organization of human salivary gland cells cultured on hydrogel-micropatterned nanofibrous microwells. Acta Biomater. 45, 121 (2016)CrossRefGoogle Scholar
  37. 37.
    A.I. Neto, K. Demir, A.A. Popova, et al., Fabrication of hydrogel particles of defined shapes using superhydrophobic-hydrophilic micropatterns. Adv. Mater. 28, 7613–7619 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • C. M. González-Henríquez
    • 1
    • 2
  • M. A. Sarabia Vallejos
    • 3
    • 4
    Email author
  • Juan Rodríguez-Hernández
    • 5
  1. 1.Departamento de Química, Facultad de Ciencias Naturales, Matemáticas y del Medio AmbienteUniversidad Tecnológica MetropolitanaSantiagoChile
  2. 2.Programa Institucional de Fomento a la Investigación, Desarrollo e InnovaciónUniversidad Tecnológica MetropolitanaSantiagoChile
  3. 3.Departamento de Ingeniería Estructural y GeotecniaPontificia Universidad Católica de Chile, Escuela de IngenieríaSantiagoChile
  4. 4.Instituto de Ingeniería Biológica y MédicaSantiagoChile
  5. 5.Departamento de Química Macromolecular AplicadaPolymer Functionalization Group. Instituto de Ciencia y Tecnología de Polímeros-Consejo Superior de Investigaciones Científicas (ICTP-CSIC)MadridSpain

Personalised recommendations