Design of Perfectly Ordered Periodic Structures on Polymers Using Direct Laser Interference Patterning

  • Andrés Fabián LasagniEmail author
  • Sabri Alamri
  • Florian Rößler
  • Valentin Lang
  • Bogdan Voisiat


Surfaces with controlled topographic characteristics can provide enhanced properties in comparison to surfaces with a random roughness. Several examples of ordered topographies can be found on the surfaces of different plants and animals, which are the result of several 1000 years of evolution. In this manner, nature has shown to be capable of overcoming survival challenges by using bottom-up approaches of surface texturing.

In this chapter, different aspects of laser-based interferometric methods for the treatment of polymer-based materials are introduced. In the first part of the chapter, the main parameters used to control and obtain interference patterns are introduced. After that, several examples of pattern fabrication are discussed showing the potential of the method. The examples include the fabrication of single-scaled and multiple-scaled patterns as well as the structuring of polymer-polymer foil’s interfaces. Finally, a general model for the simulation of the process is introduced.


Direct Laser Interference Patterning Surface structuring In-volume laser surface treatment Surface functionalization Modeling of DLIP High-throughput DLIP 



The work of S.A. was supported by the Laser4Fun project (, funded from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No. 675063. The work of A. L. is also supported by the German Research Foundation (DFG) under Excellence Initiative program by the German federal and state governments to promote top-level research at German universities.


  1. 1.
    E. Favret, N. Fuentes, Functional Properties of Bio-Inspired Surfaces: Characterization and Technological Applications (World Scientific Publishing Co. Pte. Ltd, Singapore, 2009)CrossRefGoogle Scholar
  2. 2.
    A.F. Lasagni, T. Kunze, M. Bieda, D. Günther, A. Gärtner, et al., Large area micro−/nano-structuring using direct laser interference patterning. Proc. SPIE 9735, 973515 (2016)CrossRefGoogle Scholar
  3. 3.
    A. Lasagni, B.S. F; Menéndez-Ormaza, Two- and three-dimensional micro- and sub-micrometer periodic structures using two-beam laser interference lithography. Adv. Eng. Mater. 12, 54–60 (2010)CrossRefGoogle Scholar
  4. 4.
    J.H. Seo, J.H. Park, Z. Ma, J. Choi, B.-K. Ju, Nanopatterning by laser interference lithography: Applications to optical devices. J. Nanosci. Nanotechnol. 14, 1521–1532 (2014)CrossRefGoogle Scholar
  5. 5.
    A. Lasagni, F. Mücklich, Structuring of metallic bi-and tri-nano-layer films by laser interference irradiation: Control of the structure depth. Appl. Surf. Sci. 247, 32–37 (2005)CrossRefGoogle Scholar
  6. 6.
    A.F. Lasagni, F. Mücklich, Study of the multilayer metallic films topography modified by laser interference irradiation. Appl. Surf. Sci. 240, 214–221 (2005)CrossRefGoogle Scholar
  7. 7.
    F. Yu, F. Muecklich, P. Li, H. Shen, S. Mathur, C. Lehr, U. Bakowsky, In vitro cell response to a polymer surface micropatterned by laser interference lithography. Biomacromolecules 6, 1160–1167 (2005)CrossRefGoogle Scholar
  8. 8.
    A. Rosenkranz, L. Reinert, C. Gachot, F. Mücklich, Alignment and wear debris effects between laser-patterned steel surfaces under dry sliding conditions. Wear 318, 49–61 (2014)CrossRefGoogle Scholar
  9. 9.
    A. Aktag, S. Michalski, L. Yue, R.D. Kirby, S.H. Liou, Formation of an anisotropy lattice in Co/Pt multilayers by direct laser interference patterning. J. Appl. Phys. 99, 093901 (2006)CrossRefGoogle Scholar
  10. 10.
    L. Guo, H.-B. Jiang, R.-Q. Shao, Y.-L. Zhang, S.-Y. Xie, J.–.N. Wang, X.–.B. Li, F. Jiang, Q.-D. Chen, T. Zhang, H.-B. Sun, Two-beam-laser interference mediated reduction, patterning and nanostructuring of graphene oxide for the production of a flexible humidity sensing device. Carbon 50, 1667–1673 (2012)CrossRefGoogle Scholar
  11. 11.
    M. Bieda, C. Schmädicke, T. Roch, A.F. Lasagni, Ultra-low friction on 100Cr6-steel surfaces after direct laser interference patterning. Adv. Eng. Mater. 17, 102–108 (2015)CrossRefGoogle Scholar
  12. 12.
    A.F. Lasagni, C. Gachot, K.E. Trinh, M. Hans, A. Rosenkranz, et al., Direct laser interference patterning, 20 years of development: From the basics to industrial applications, in Proceedings of SPIE 2017, 10092, 1009211-1-11Google Scholar
  13. 13.
    H. Misawa, S. Juodkazis, 3D Laser Microfabrication. Principles and Applications (WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, 2006)CrossRefGoogle Scholar
  14. 14.
    E. Hecht, Optics (Addison-Wesley, San Francisco, 2002)Google Scholar
  15. 15.
    A.F. Lasagni, D.F. Acevedo, C.A. Barbero, F. Mücklich, One-step production of organized surface architectures on polymeric materials by direct laser interference patterning. Adv. Eng. Mater. 9(1–2), 99–103 (2007)CrossRefGoogle Scholar
  16. 16.
    D. Bäuerle, Laser Processing and Chemistry, 2nd edn. (Springer, Berlin, 1996)CrossRefGoogle Scholar
  17. 17.
    T. Lippert, J.T. Dickinson, S.C. Langford, H. Furutani, H. Fukumura, H. Masuhara, T. Kunz, A. Wokaun, Photopolymers designed for laser ablation–photochemical ablation mechanism. Appl. Surf. Sci. 117, 127–129 (1998)Google Scholar
  18. 18.
    R.C. Progelhof, J. Franey, T.W. Haas, Absorption coefficient of unpigmented poly (methyl methacrylate), polystyrene, polycarbonate, and poly (4-methylpentene-1) sheets. J. Appl. Polym. Sci. 15, 1803 (1971)CrossRefGoogle Scholar
  19. 19.
    S.B. Babu, G.C. D’Cuoto, F.D. Egitto, Excimer laser induced ablation of polyetheretherketone, polyimide, and polytetrafluoroethylene. J. Appl. Phys. 72, 692 (1992)CrossRefGoogle Scholar
  20. 20.
    Y. Feng, J. Gottmann, E.W. Kreutz, Structuring of poly ether ether ketone by ArF excimer laser radiation in different atmospheres. Appl. Surf. Sci. 211, 68 (2003)CrossRefGoogle Scholar
  21. 21.
    F. Rößler, D. Günther, A.F. Lasagni, Fabrication of hierarchical micro patterns on PET substrates using direct laser interference patterning. Adv. Eng. Mater. 18(10), 1755–1762 (2016)CrossRefGoogle Scholar
  22. 22.
    H. Watanabe, M. Yamamoto, Laser ablation of poly (ethylene terephthalate). J. Appl. Polym. Sci. 64(6), 1203–1209 (1997)CrossRefGoogle Scholar
  23. 23.
    R. Srinivasan, B. Braren, Ultraviolet laser ablation of organic polymers. Chem. Rev. 89(6), 1303–1316 (1989)CrossRefGoogle Scholar
  24. 24.
    T. Bahners, E. Schollmeyer, Morphological changes of the surface structure of polymers due to excimer laser radiation: A synergetic effect. J. Appl. Phys. 66(4), 1884–1886 (1989)CrossRefGoogle Scholar
  25. 25.
    A.F. Lasagni, D. Langheinrich, S. Eckhardt, Direct fabrication of periodic patterns on polymers using laser interference. Plastic Research Online, 1–2 (2012)Google Scholar
  26. 26.
    G. Fowles, Introduction to Modern Optics, 2nd edn. (Holt, Rinehart and Winston, New York, 1975)Google Scholar
  27. 27.
    J.W. Goodman, Introduction to Fourier Optics (Roberts & Co., Englewood, 2005)Google Scholar
  28. 28.
    S. Alamri, A.F. Lasagni, Development of a general model for direct laser interference patterning of polymers. Opt. Express 25(9), 9603–9616 (2017)CrossRefGoogle Scholar
  29. 29.
    V. Lang, T. Roch, A.F. Lasagni, High-speed surface structuring of polycarbonate using direct laser interference patterning: Toward 1 m2 min−1 fabrication speed barrier. Adv. Eng. Mater. 18, 1342–1348 (2016)CrossRefGoogle Scholar
  30. 30.
    T. Kunze, C. Zwahr, B. Krupop, S. Alamri, F. Rößler, A.F. Lasagni, Development of a scanner-based direct laser interference patterning optical head: New surface structuring opportunities. Proc. SPIE 10092, 1009214 (2017)CrossRefGoogle Scholar
  31. 31.
    S. Alamri, A.I. Aguilar-Morales, A.F. Lasagni, Controlling the wettability of polycarbonate substrates by producing hierarchical structures using direct laser interference patterning. Eur. Polym. J. 99, 27–37 (2018)CrossRefGoogle Scholar
  32. 32.
    F. Rößler, K. Günther, A.F. Lasagni, In-volume structuring of a bilayered polymer foil using direct laser interference patterning. Appl. Surf. Sci. 440, 1166–1171 (2018)CrossRefGoogle Scholar
  33. 33.
    A.F. Lasagni, D.F. Acevedo, C.A. Barbero, F. Mücklich, Direct patterning of polystyrene–polymethyl methacrylate copolymer by means of laser interference lithography using UV laser irradiation. Polym. Eng. Sci. 48, 2367–2372 (2008)CrossRefGoogle Scholar
  34. 34.
    M.F. Broglia, D.F. Acevedo, D. Langheinrich, H.R. Perez-Hernandez, C.A. Barbero, A.F. Lasagni, Rapid fabrication of periodic patterns on Poly (styrene-co-acrylonitrile) surfaces using direct laser interference patterning. Int. J. Polym. Sci. 2015, 721035 (2015)CrossRefGoogle Scholar
  35. 35.
    F. Beinhorn, J. Ihlemann, K. Luther, J. Troe, Micro-lens arrays generated by UV laser irradiation of doped PMMA. Appl. Phys. A Mater. Sci. Process. 68, 709–713 (1999)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Andrés Fabián Lasagni
    • 1
    • 2
    Email author
  • Sabri Alamri
    • 1
    • 2
  • Florian Rößler
    • 1
  • Valentin Lang
    • 1
    • 2
  • Bogdan Voisiat
    • 1
  1. 1.Institute for Manufacturing TechnologyTechnische Universität DresdenDresdenGermany
  2. 2.Fraunhofer Institute for Werkstoff- und Strahltechnik IWSDresdenGermany

Personalised recommendations