Advertisement

Laser-Induced Periodic Surface Structures (LIPSS) on Polymer Surfaces

  • Esther Rebollar
  • Tiberio A. Ezquerra
  • Aurora NogalesEmail author
Chapter

Abstract

Wrinkled surfaces can be obtained through the control of surface instabilities produced by repeated irradiation of polymer surfaces by pulsed lasers. By the combination of the electric field associated with the laser beam and the heating of the polymer surface during a short period of time, which typically is in the range of nanosecond, when the irradiating with nanosecond laser pulses of are used, periodic dissipative structures appear. The periodic rippled topography is directly related to the wavelength of the laser. In this chapter, we discuss the role of actors like the substrate, the absorption of polymer, and the thermal conductivity and diffusivity on tuning the obtaining periodic structures.

In this chapter, a description of the experimental setup required for obtaining LIPSS is presented. Afterward, the necessary conditions to obtain LIPSS in polymer surfaces are discussed, and finally, LIPSS in different polymers are reviewed.

Keywords

Laser-induced periodic surface structures Pulsed laser Thermal properties Nanostructure Templates 

Notes

Acknowledgments

This work has been supported by the Spanish Ministry of Economy and Competitiveness under the projects MAT2014-59187-R, MAT2015-66443-C02-1-R, and CTQ2016-75880-P. E.R. thanks MINECO for the tenure of a Ramón y Cajal contract (No. RYC-2011-08069).

References

  1. 1.
    A.Y. Malkin, Surface instabilities. Colloid J. 70(6), 673–689 (2008)CrossRefGoogle Scholar
  2. 2.
    M.M. Denn, Extrusion instabilities and wall slip. Annu. Rev. Fluid Mech. 33(1), 265–287 (2001)CrossRefGoogle Scholar
  3. 3.
    C.-M. Chen, S. Yang, Wrinkling instabilities in polymer films and their applications. Polym. Int. 61(7), 1041–1047 (2012)CrossRefGoogle Scholar
  4. 4.
    J. Rodríguez-Hernández, Wrinkled interfaces: Taking advantage of surface instabilities to pattern polymer surfaces. Prog. Polym. Sci. 42, 1–41 (2015)CrossRefGoogle Scholar
  5. 5.
    N. Vargas-Alfredo et al., Highly efficient antibacterial surfaces based on bacterial/cell size selective microporous supports. ACS Appl. Mater. Interfaces 9(51), 44270–44280 (2017)CrossRefGoogle Scholar
  6. 6.
    E. Schäffer et al., Electrically induced structure formation and pattern transfer. Nature 403, 874 (2000)CrossRefGoogle Scholar
  7. 7.
    N. Wu, W.B. Russel, Micro- and nano-patterns created via electrohydrodynamic instabilities. Nano Today 4(2), 180–192 (2009)CrossRefGoogle Scholar
  8. 8.
    M. Malinauskas et al., Ultrafast laser nanostructuring of photopolymers: A decade of advances. Phys. Rep. 533(1), 1–31 (2013)CrossRefGoogle Scholar
  9. 9.
    E. Rebollar et al., Assessment and formation mechanism of laser-induced periodic surface structures on polymer spin-coated films in real and reciprocal space. Langmuir 27(9), 5596–5606 (2011)CrossRefGoogle Scholar
  10. 10.
    E. Rebollar et al., In situ monitoring of laser-induced periodic surface structures formation on polymer films by grazing incidence small-angle X-ray scattering. Langmuir 31(13), 3973–3981 (2015)CrossRefGoogle Scholar
  11. 11.
    Á. Rodríguez-Rodríguez et al., Laser-induced periodic surface structures on conjugated polymers: Poly(3-hexylthiophene). Macromolecules 48(12), 4024–4031 (2015)CrossRefGoogle Scholar
  12. 12.
    I. Michaljaničová et al., Regular pattern formation on surface of aromatic polymers and its cytocompatibility. Appl. Surf. Sci. 370, 131–141 (2016)CrossRefGoogle Scholar
  13. 13.
    M. Csete, Z. Bor, Laser-induced periodic surface structure formation on polyethylene-terephthalate. Appl. Surf. Sci. 133(1), 5–16 (1998)CrossRefGoogle Scholar
  14. 14.
    M. Csete et al., The role of original surface roughness in laser-induced periodic surface structure formation process on poly-carbonate films. Thin Solid Films 453–454, 114–120 (2004)CrossRefGoogle Scholar
  15. 15.
    M. Csete et al., Attenuated total reflection measurements on poly-carbonate surfaces structured by laser illumination. Appl. Surf. Sci. 208–209, 474–480 (2003)CrossRefGoogle Scholar
  16. 16.
    E. Rebollar et al., Ultraviolet and infrared femtosecond laser induced periodic surface structures on thin polymer films. Appl. Phys. Lett. 100(4), 041106 (2012)CrossRefGoogle Scholar
  17. 17.
    Z. Guosheng, P.M. Fauchet, A.E. Siegman, Growth of spontaneous periodic surface structures on solids during laser illumination. Phys. Rev. B 26(10), 5366–5381 (1982)CrossRefGoogle Scholar
  18. 18.
    D.W. Bäuerle, Laser Processing and Chemistry (Springer, Berlin/Heidelberg, 2011)CrossRefGoogle Scholar
  19. 19.
    M. Li et al., Effects of post-thermal treatment on preparation of surface microstructures induced by polarized laser on polyimide film. Mater. Chem. Phys. 77(3), 895–898 (2003)CrossRefGoogle Scholar
  20. 20.
    C.M. Mate, M.F. Toney, K.A. Leach, Roughness of thin perfluoropolyether lubricant films: Influence on disk drive technology. IEEE Trans. Magn. 37(4), 1821–1823 (2001)CrossRefGoogle Scholar
  21. 21.
    J. Cui et al., Influence of substrate and film thickness on polymer LIPSS formation. Appl. Surf. Sci. 394, 125–131 (2017)CrossRefGoogle Scholar
  22. 22.
    P. Slepička et al., Angle dependent laser nanopatterning of poly(ethylene terephthalate) surfaces. Appl. Surf. Sci. 257(14), 6021–6025 (2011)CrossRefGoogle Scholar
  23. 23.
    M.A. Green, Self-consistent optical parameters of intrinsic silicon at 300K including temperature coefficients. Sol. Energy Mater. Sol. Cells 92(11), 1305–1310 (2008)CrossRefGoogle Scholar
  24. 24.
    F.A. Lasagni et al., Fabrication and characterization in the micro-nano range. Adv. Struct. Mater. 10, 361–377 (2011)Google Scholar
  25. 25.
    E.C. Beder, C.D. Bass, W.L. Shackleford, Transmissivity and absorption of fused quartz between 0.22 μ and 3.5 μ from room temperature to 1500° C. Appl. Opt. 10(10), 2263–2268 (1971)CrossRefGoogle Scholar
  26. 26.
  27. 27.
    P. Crystran Ltd, U., Quartz Crystal (SiO2). https://www.crystran.co.uk/optical-materials/quartz-crystal-sio2
  28. 28.
    I.H. Malitson, Interspecimen comparison of the refractive index of fused silica*,†. J. Opt. Soc. Am. 55(10), 1205–1209 (1965)CrossRefGoogle Scholar
  29. 29.
    A. Vogel, V. Venugopalan, Mechanisms of pulsed laser ablation of biological tissues. Chem. Rev. 103(2), 577–644 (2003)CrossRefGoogle Scholar
  30. 30.
    S. Lazare et al., New surface modifications of polymer films with the excimer laser radiation, in Ninth International Symposium on Gas Flow and Chemical Lasers, (SPIE, Bellingham, 1993)Google Scholar
  31. 31.
    E. Rebollar et al., Physicochemical modifications accompanying UV laser induced surface structures on poly(ethylene terephthalate) and their effect on adhesion of mesenchymal cells. Phys. Chem. Chem. Phys. 16(33), 17551–17559 (2014)CrossRefGoogle Scholar
  32. 32.
    E. Rebollar et al., Proliferation of aligned mammalian cells on laser-nanostructured polystyrene. Biomaterials 29(12), 1796–1806 (2008)CrossRefGoogle Scholar
  33. 33.
    G. Mayer et al., Physico-chemical and biological evaluation of excimer laser irradiated polyethylene terephthalate (pet) surfaces. Biomaterials 27(4), 553–566 (2006)CrossRefGoogle Scholar
  34. 34.
    X. Wang et al., Cell directional migration and oriented division on three-dimensional laser-induced periodic surface structures on polystyrene. Biomaterials 29(13), 2049–2059 (2008)CrossRefGoogle Scholar
  35. 35.
    E. Rebollar et al., Gold coatings on polymer laser induced periodic surface structures: Assessment as substrates for surface-enhanced Raman scattering. Phys. Chem. Chem. Phys. 14(45), 15699–15705 (2012)CrossRefGoogle Scholar
  36. 36.
    E. Rebollar et al., Laser-induced surface structures on gold-coated polymers: Influence of morphology on surface-enhanced Raman scattering enhancement. J. Appl. Polym. Sci. 132(45), 42770 (2015)CrossRefGoogle Scholar
  37. 37.
    J. Cui et al., Laser-induced periodic surface structures on P3HT and on its photovoltaic blend with PC71BM. ACS Appl. Mater. Interfaces 8(46), 31894–31901 (2016)CrossRefGoogle Scholar
  38. 38.
    S. Pérez et al., Laser-induced periodic surface structuring of biopolymers. Appl. Phys. A 110(3), 683–690 (2013)CrossRefGoogle Scholar
  39. 39.
    I. Martín-Fabiani et al., Laser-induced periodic surface structures nanofabricated on poly(trimethylene terephthalate) spin-coated films. Langmuir 28(20), 7938–7945 (2012)CrossRefGoogle Scholar
  40. 40.
    M. Csete, O. Marti, Z. Bor, Laser-induced periodic surface structures on different poly-carbonate films. Appl. Phys. A 73(4), 521–526 (2001)CrossRefGoogle Scholar
  41. 41.
    Á. Rodríguez-Rodríguez et al., Patterning conjugated polymers by laser: Synergy of nanostructure formation in the all-polymer heterojunction P3HT/PCDTBT. Langmuir 34(1), 115–125 (2018)CrossRefGoogle Scholar
  42. 42.
    R.I. Rodríguez-Beltrán et al., Laser induced periodic surface structures on polymer nanocomposites with carbon nanoadditives. Appl. Phys. A 123(11), 717 (2017)CrossRefGoogle Scholar
  43. 43.
    R.I. Rodríguez-Beltrán et al., Laser induced periodic surface structures formation by nanosecond laser irradiation of poly (ethylene terephthalate) reinforced with expanded graphite. Appl. Surf. Sci. 436, 1193–1199 (2018)CrossRefGoogle Scholar
  44. 44.
    W. Hendrikson et al., Mold-based application of Laser-Induced Periodic Surface Structures (LIPSS) on biomaterials for nanoscale patterning. Macromol. Biosci. 16(1), 43–49 (2015)CrossRefGoogle Scholar
  45. 45.
    D.E. Martínez-Tong et al., Laser fabrication of polymer ferroelectric nanostructures for nonvolatile organic memory devices. ACS Appl. Mater. Interfaces 7(35), 19611–19618 (2015)CrossRefGoogle Scholar
  46. 46.
    E. Rebollar et al., Assessment of femtosecond laser induced periodic surface structures on polymer films. Phys. Chem. Chem. Phys. 15(27), 11287–11298 (2013)CrossRefGoogle Scholar
  47. 47.
    M. Forster et al., Periodic nanoscale structures on polyimide surfaces generated by temporally tailored femtosecond laser pulses. Phys. Chem. Chem. Phys. 13(9), 4155–4158 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Esther Rebollar
    • 1
  • Tiberio A. Ezquerra
    • 2
  • Aurora Nogales
    • 2
    Email author
  1. 1.Instituto de Química Física RocasolanoMadridSpain
  2. 2.Instituto de Estructura de la MateriaMadridSpain

Personalised recommendations