Advertisement

Wrinkled Hydrogel Formation by Interfacial Swelling on Thermoplastic Surfaces

  • Enrique Martinez
  • Alberto GallardoEmail author
  • Ana Santos-Coquillat
  • Noelia Lujan
  • Helmut Reinecke
  • Adolfo del Campo
  • Juan Rodríguez-HernandezEmail author
Chapter

Abstract

The development of simple strategies capable of simultaneously producing hydrophilic surfaces and controlled surface topography is rare in spite of their huge potential for a wide myriad of applications. Herein, we first summarize the different strategies to fabricate microstructured hydrogel surfaces and the different biological applications described in the literature. Then, we describe a procedure used to fabricate wrinkled structures in thermoplastics. We present a straightforward approach to form microwrinkled surfaces on polycarbonate (PC) film after a process that involves three different steps: first, the contact between a photosensitive monomer mixture based on vinylpyrrolidone (VP) and the PC substrate; second, a UV-curing step of this solution; and third, the hydrogel detachment as a result of the swelling in ethanol. Several parameters allow us to vary the wrinkle characteristics including the contact time between the PC surface and the photopolymerizable solution prior to the UV-vis irradiation, the type of solvent, as well as the cross-linking degree. By contact angle measurements and by confocal Raman microscopy, we were able to demonstrate that the PC wrinkled surface produced after hydrogel detachment has a thin hydrogel layer. Thus the hydrogel presented an internal rupture close to the PC substrate. Finally, we evaluated biocompatibility analyzing cell proliferation, cell morphology, and cell detachment on the substrates with both variable chemical composition and wrinkle size and period.

Keywords

Wrinkled hydrogels Thermoplastics Interfacial diffusion Surface chemical composition Cell culture 

Notes

Acknowledgments

The authors gratefully acknowledge support from the Consejo Superior de Investigaciones Científicas (CSIC). Equally, this work was financially supported by the Ministerio de Economía y Competitividad (MINECO) through MAT2013-47902-C2-1-R, MAT2013-42957-R, and MAT2016-78437-R, FEDER-EU.

References

  1. 1.
    C.-M. Chen, S. Yang, Wrinkling instabilities in polymer films and their applications. Polym. Int. 61(7), 1041–1047 (2012)CrossRefGoogle Scholar
  2. 2.
    A. Schweikart, A. Fery, Controlled wrinkling as a novel method for the fabrication of patterned surfaces. Microchim. Acta 165(3–4), 249–263 (2009)CrossRefGoogle Scholar
  3. 3.
    J. Genzer, J. Groenewold, Soft matter with hard skin: From skin wrinkles to templating and material characterization. Soft Matter 2(4), 310–323 (2006)CrossRefGoogle Scholar
  4. 4.
    S. McCormick, Materials science – Exploiting wrinkle formation. Science 317(5838), 605–606 (2007)CrossRefGoogle Scholar
  5. 5.
    F. Weiss, S. Cai, Y. Hu, M.K. Kang, R. Huang, Z. Suo, Creases and wrinkles on the surface of a swollen gel. J. Appl. Phys. 114(7), 073507 (2013)CrossRefGoogle Scholar
  6. 6.
    S. Cai, D. Chen, Z. Suo, R.C. Hayward, Creasing instability of elastomer films. Soft Matter 8(5), 1301–1304 (2012)CrossRefGoogle Scholar
  7. 7.
    S.S. Velankar, V. Lai, R.A. Vaia, Swelling-induced delamination causes folding of surface-tethered polymer gels. ACS Appl. Mater. Interfaces 4(1), 24–29 (2012)CrossRefGoogle Scholar
  8. 8.
    T. Bahners, L. Prager, S. Kriehn, J.S. Gutmann, Super-hydrophilic surfaces by photo-induced micro-folding. Appl. Surf. Sci. 259, 847–852 (2012)CrossRefGoogle Scholar
  9. 9.
    Y.-P. Cao, B. Li, X.-Q. Feng, Surface wrinkling and folding of core-shell soft cylinders. Soft Matter 8(2), 556–562 (2012)CrossRefGoogle Scholar
  10. 10.
    R. Schubert, T. Scherzer, M. Hinkefuss, B. Marquardt, J. Vogel, M.R. Buchmeiser, VUV-induced micro-folding of acrylate-based coatings. 1. Real-time methods for the determination of the micro-folding kinetics. Surf. Coat. Technol. 203(13), 1844–1849 (2009)CrossRefGoogle Scholar
  11. 11.
    D.P. Holmes, A.J. Crosby, Draping films: A wrinkle to fold transition. Phys. Rev. Lett. 105(3), 038303 (2010)CrossRefGoogle Scholar
  12. 12.
    J. Rodríguez-Hernández, Wrinkled interfaces: Taking advantage of surface instabilities to pattern polymer surfaces. Prog. Polym. Sci. 42, 1–41 (2015)CrossRefGoogle Scholar
  13. 13.
    K. Efimenko, M. Rackaitis, E. Manias, A. Vaziri, L. Mahadevan, J. Genzer, Nested self-similar wrinkling patterns in skins. Nat. Mater. 4(4), 293 (2005)CrossRefGoogle Scholar
  14. 14.
    T. Ohzono, M. Shimomura, Ordering of microwrinkle patterns by compressive strain. Phys. Rev. B 69(13), 132202 (2004)CrossRefGoogle Scholar
  15. 15.
    T. Ohzono, M. Shimomura, Geometry-dependent stripe rearrangement processes induced by strain on preordered microwrinkle patterns. Langmuir 21(16), 7230–7237 (2005)CrossRefGoogle Scholar
  16. 16.
    W.M. Choi, J. Song, D.-Y. Khang, H. Jiang, Y.Y. Huang, J.A. Rogers, Biaxially stretchable “wavy” silicon nanomembranes. Nano Lett. 7(6), 1655–1663 (2007)CrossRefGoogle Scholar
  17. 17.
    H. Jiang, D.-Y. Khang, J. Song, Y. Sun, Y. Huang, J.A. Rogers, Finite deformation mechanics in buckled thin films on compliant supports. Proc. Natl. Acad. Sci. 104(40), 15607–15612 (2007)CrossRefGoogle Scholar
  18. 18.
    N. Uchida, T. Ohzono, Orientational ordering of buckling-induced microwrinkles on soft substrates. Soft Matter 6(22), 5729–5735 (2010)CrossRefGoogle Scholar
  19. 19.
    P.J. Yoo, Fabrication of complexly patterned wavy structures using self-organized anisotropic wrinkling. Electron. Mater. Lett. 7(1), 17–23 (2011)CrossRefGoogle Scholar
  20. 20.
    N. Bowden, S. Brittain, A.G. Evans, J.W. Hutchinson, G.M. Whitesides, Spontaneous formation of ordered structures in thin films of metals supported on an elastomeric polymer. Nature 393(6681), 146 (1998)CrossRefGoogle Scholar
  21. 21.
    J. Kim, H.H. Lee, Wave formation by heating in thin metal film on an elastomer. J. Polym. Sci. B Polym. Phys. 39(11), 1122–1128 (2001)CrossRefGoogle Scholar
  22. 22.
    P.J. Yoo, H.H. Lee, Complex pattern formation by adhesion-controlled anisotropic wrinkling. Langmuir 24(13), 6897–6902 (2008)CrossRefGoogle Scholar
  23. 23.
    T. Okayasu, H.L. Zhang, D.G. Bucknall, G.A.D. Briggs, Spontaneous formation of ordered lateral patterns in polymer thin-film structures. Adv. Funct. Mater. 14(11), 1081–1088 (2004)CrossRefGoogle Scholar
  24. 24.
    J.Y. Chung, A.J. Nolte, C.M. Stafford, Diffusion-controlled, self-organized growth of symmetric wrinkling patterns. Adv. Mater. 21(13), 1358–1362 (2009)CrossRefGoogle Scholar
  25. 25.
    H. Vandeparre, S. Gabriele, F. Brau, C. Gay, K.K. Parker, P. Damman, Hierarchical wrinkling patterns. Soft Matter 6(22), 5751–5756 (2010)CrossRefGoogle Scholar
  26. 26.
    S.K. Basu, A.V. McCormick, L. Scriven, Stress generation by solvent absorption and wrinkling of a cross-linked coating atop a viscous or elastic base. Langmuir 22(13), 5916–5924 (2006)CrossRefGoogle Scholar
  27. 27.
    D. Breid, A.J. Crosby, Surface wrinkling behavior of finite circular plates. Soft Matter 5(2), 425–431 (2009)CrossRefGoogle Scholar
  28. 28.
    M. Guvendiren, J.A. Burdick, S. Yang, Kinetic study of swelling-induced surface pattern formation and ordering in hydrogel films with depth-wise crosslinking gradient. Soft Matter 6(9), 2044–2049 (2010)CrossRefGoogle Scholar
  29. 29.
    J. Huang, M. Juszkiewicz, W.H. De Jeu, E. Cerda, T. Emrick, N. Menon, T.P. Russell, Capillary wrinkling of floating thin polymer films. Science 317(5838), 650–653 (2007)CrossRefGoogle Scholar
  30. 30.
    D. Vella, M. Adda-Bedia, E. Cerda, Capillary wrinkling of elastic membranes. Soft Matter 6(22), 5778–5782 (2010)CrossRefGoogle Scholar
  31. 31.
    O. Wichterle, D. Lim, Hydrophilic gels for biological use. Nature 185(4706), 117 (1960)CrossRefGoogle Scholar
  32. 32.
    F. Ullah, M.B.H. Othman, F. Javed, Z. Ahmad, H.M. Akil, Classification, processing and application of hydrogels: A review. Mater. Sci. Eng. C 57, 414–433 (2015)CrossRefGoogle Scholar
  33. 33.
    K. Varaprasad, G.M. Raghavendra, T. Jayaramudu, M.M. Yallapu, R. Sadiku, A mini review on hydrogels classification and recent developments in miscellaneous applications. Mater. Sci. Eng. C 79, 958–971 (2017)CrossRefGoogle Scholar
  34. 34.
    W. Roorda, H. Bodde, A. De Boer, H. Junginger, Synthetic hydrogels as drug delivery systems. Pharm. Weekbl. 8(3), 165–189 (1986)Google Scholar
  35. 35.
    S.J. Buwalda, K.W. Boere, P.J. Dijkstra, J. Feijen, T. Vermonden, W.E. Hennink, Hydrogels in a historical perspective: From simple networks to smart materials. J. Control. Release 190, 254–273 (2014)CrossRefGoogle Scholar
  36. 36.
    E.M. Ahmed, Hydrogel: Preparation, characterization, and applications: A review. J. Adv. Res. 6(2), 105–121 (2015)CrossRefGoogle Scholar
  37. 37.
    W.A. Laftah, S. Hashim, A.N. Ibrahim, Polymer hydrogels: A review. Polym.-Plast. Technol. Eng. 50(14), 1475–1486 (2011)CrossRefGoogle Scholar
  38. 38.
    G.M. Raghavendra, K.Varaprasad, T. Jayaramudu, Biomaterials: Design, Development and Biomedical Applications, Nanotechnology Applications for Tissue Engineering. (Elsevier, Oxford, 2015), pp. 21–44CrossRefGoogle Scholar
  39. 39.
    K. Sharma, B. Kaith, V. Kumar, S. Kalia, V. Kumar, H. Swart, Water retention and dye adsorption behavior of Gg-cl-poly (acrylic acid-aniline) based conductive hydrogels. Geoderma 232, 45–55 (2014)CrossRefGoogle Scholar
  40. 40.
    S. Ma, B. Yu, X. Pei, F. Zhou, Structural hydrogels. Polymer 98, 516–535 (2016)CrossRefGoogle Scholar
  41. 41.
    B.R. Saunders, B. Vincent, Microgel particles as model colloids: Theory, properties and applications. Adv. Colloid Interf. Sci. 80(1), 1–25 (1999)CrossRefGoogle Scholar
  42. 42.
    P. Bradna, P. Stern, O. Quadrat, J. Snuparek, Thickening effect of dispersions of ethyl acrylate-methacrylic acid copolymer prepared by different polymerization routes. Colloid Polym. Sci. 273(4), 324–330 (1995)CrossRefGoogle Scholar
  43. 43.
    L.A. Lyon, Z. Meng, N. Singh, C.D. Sorrell, A.S. John, Thermoresponsive microgel-based materials. Chem. Soc. Rev. 38(4), 865–874 (2009)CrossRefGoogle Scholar
  44. 44.
    C.M. Nolan, M.J. Serpe, L.A. Lyon, Thermally modulated insulin release from microgel thin films. Biomacromolecules 5(5), 1940–1946 (2004)CrossRefGoogle Scholar
  45. 45.
    J. Kim, M.J. Serpe, L.A. Lyon, Hydrogel microparticles as dynamically tunable microlenses. J. Am. Chem. Soc. 126(31), 9512–9513 (2004)CrossRefGoogle Scholar
  46. 46.
    K. Ishii, Synthesis of microgels and their application to coatings. Colloids Surf. A Physicochem. Eng. Asp. 153(1–3), 591–595 (1999)CrossRefGoogle Scholar
  47. 47.
    L. Ionov, Biomimetic hydrogel-based actuating systems. Adv. Funct. Mater. 23(36), 4555–4570 (2013)CrossRefGoogle Scholar
  48. 48.
    S. Ma, M. Scaraggi, D. Wang, X. Wang, Y. Liang, W. Liu, D. Dini, F. Zhou, Nanoporous substrate-infiltrated hydrogels: A bioinspired regenerable surface for high load bearing and tunable friction. Adv. Funct. Mater. 25(47), 7366–7374 (2015)CrossRefGoogle Scholar
  49. 49.
    L. Binan, A. Ajji, G. De Crescenzo, M. Jolicoeur, Approaches for neural tissue regeneration. Stem Cell Rev. Rep. 10(1), 44–59 (2014)CrossRefGoogle Scholar
  50. 50.
    A.E. Haggerty, M. Oudega, Biomaterials for spinal cord repair. Neurosci. Bull. 29(4), 445–459 (2013)CrossRefGoogle Scholar
  51. 51.
    N. Bassik, B.T. Abebe, K.E. Laflin, D.H. Gracias, Photolithographically patterned smart hydrogel based bilayer actuators. Polymer 51(26), 6093–6098 (2010)CrossRefGoogle Scholar
  52. 52.
    P. Gruner, M. Arlt, T. Fuhrmann-Lieker, Surface wrinkling induced by photofluidization of low molecular azo glasses. ChemPhysChem 14(2), 424–430 (2013)CrossRefGoogle Scholar
  53. 53.
    N. Lambricht, T. Pardoen, S. Yunus, Giant stretchability of thin gold films on rough elastomeric substrates. Acta Mater. 61(2), 540–547 (2013)CrossRefGoogle Scholar
  54. 54.
    M. Ramanathan, B.S. Lokitz, J.M. Messman, C.M. Stafford, S.M. Kilbey II, Spontaneous wrinkling in azlactone-based functional polymer thin films in 2D and 3D geometries for guided nanopatterning. J. Mater. Chem. C 1(11), 2097–2101 (2013)CrossRefGoogle Scholar
  55. 55.
    Z. Wu, N. Bouklas, R. Huang, Swell-induced surface instability of hydrogel layers with material properties varying in thickness direction. Int. J. Solids Struct. 50(3–4), 578–587 (2013)CrossRefGoogle Scholar
  56. 56.
    Z. Chen, Y.Y. Kim, S. Krishnaswamy, Anisotropic wrinkle formation on shape memory polymer substrates. J. Appl. Phys. 112(12), 124319 (2012)CrossRefGoogle Scholar
  57. 57.
    Y.-C. Chen, A.J. Crosby, Wrinkling of inhomogeneously strained thin polymer films. Soft Matter 9(1), 43–47 (2013)CrossRefGoogle Scholar
  58. 58.
    J. Dervaux, M.B. Amar, Mechanical instabilities of gels. Annu. Rev. Condens. Matter Phys. 3(1), 311–332 (2012)CrossRefGoogle Scholar
  59. 59.
    C.M. Chen, S. Yang, Wrinkling instabilities in polymer films and their applications. Polym. Int. 61(7), 1041–1047 (2012)CrossRefGoogle Scholar
  60. 60.
    B. Li, Y.-P. Cao, X.-Q. Feng, H. Gao, Mechanics of morphological instabilities and surface wrinkling in soft materials: A review. Soft Matter 8(21), 5728–5745 (2012)CrossRefGoogle Scholar
  61. 61.
    J. Gu, X. Li, H. Ma, Y. Guan, Y. Zhang, One-step synthesis of PHEMA hydrogel films capable of generating highly ordered wrinkling patterns. Polymer 110, 114–123 (2017)CrossRefGoogle Scholar
  62. 62.
    M. Guvendiren, S. Yang, J.A. Burdick, Swelling-induced surface patterns in hydrogels with gradient crosslinking density. Adv. Funct. Mater. 19(19), 3038–3045 (2009)CrossRefGoogle Scholar
  63. 63.
    C.M. González-Henríquez, D.H. Sagredo-Oyarce, M.A. Sarabia-Vallejos, J. Rodríguez-Hernández, Fabrication of micro and sub-micrometer wrinkled hydrogel surfaces through thermal and photocrosslinking processes. Polymer 101, 24–33 (2016)CrossRefGoogle Scholar
  64. 64.
    M. Guvendiren, J.A. Burdick, The control of stem cell morphology and differentiation by hydrogel surface wrinkles. Biomaterials 31(25), 6511–6518 (2010)CrossRefGoogle Scholar
  65. 65.
    M. Guvendiren, S. Yang, J.A. Burdick, Swelling-induced surface patterns in hydrogels with gradient crosslinking density. Adv. Funct. Mater. 19(19), 3038–3045 (2009)CrossRefGoogle Scholar
  66. 66.
    C. Tang, B. Li, C. Zou, L. Liu, H. Chen, Voltage-induced wrinkle performance in a hydrogel by dielectric elastomer actuation. Polymer 10(7), 697 (2018)CrossRefGoogle Scholar
  67. 67.
    A. Parfitt, Age-related structural changes in trabecular and cortical bone: Cellular mechanisms and biomechanical consequences. Calcif. Tissue Int. 36(1), S123–S128 (1984)CrossRefGoogle Scholar
  68. 68.
    V.I. Sikavitsas, J.S. Temenoff, A.G. Mikos, Biomaterials and bone mechanotransduction. Biomaterials 22(19), 2581–2593 (2001)CrossRefGoogle Scholar
  69. 69.
    F. Greqoir, C. Smas, H. Sul, Understanding adipocyte differentiation. Physiol. Rev. 78, 783–809 (1998)CrossRefGoogle Scholar
  70. 70.
    A.E. Grigoriadis, J. Heersche, J.E. Aubin, Differentiation of muscle, fat, cartilage, and bone from progenitor cells present in a bone-derived clonal cell population: Effect of dexamethasone. J. Cell Biol. 106(6), 2139–2151 (1988)CrossRefGoogle Scholar
  71. 71.
    J. Fukuda, Y. Sakai, K. Nakazawa, Novel hepatocyte culture system developed using microfabrication and collagen/polyethylene glycol microcontact printing. Biomaterials 27(7), 1061–1070 (2006)CrossRefGoogle Scholar
  72. 72.
    S.F. Wong, D.Y. No, Y.Y. Choi, D.S. Kim, B.G. Chung, S.-H. Lee, Concave microwell based size-controllable hepatosphere as a three-dimensional liver tissue model. Biomaterials 32(32), 8087–8096 (2011)CrossRefGoogle Scholar
  73. 73.
    J.C. Mohr, J.J. de Pablo, S.P. Palecek, 3-D microwell culture of human embryonic stem cells. Biomaterials 27(36), 6032–6042 (2006)CrossRefGoogle Scholar
  74. 74.
    J. Fukuda, A. Khademhosseini, Y. Yeo, X. Yang, J. Yeh, G. Eng, J. Blumling, C.-F. Wang, D.S. Kohane, R. Langer, Micromolding of photocrosslinkable chitosan hydrogel for spheroid microarray and co-cultures. Biomaterials 27(30), 5259–5267 (2006)CrossRefGoogle Scholar
  75. 75.
    H. Tekin, M. Anaya, M.D. Brigham, C. Nauman, R. Langer, A. Khademhosseini, Stimuli-responsive microwells for formation and retrieval of cell aggregates. Lab Chip 10(18), 2411–2418 (2010)CrossRefGoogle Scholar
  76. 76.
    K.H. Lee, D.Y. No, S.-H. Kim, J.H. Ryoo, S.F. Wong, S.-H. Lee, Diffusion-mediated in situalginate encapsulation of cell spheroids using microscale concave well and nanoporous membrane. Lab Chip 11(6), 1168–1173 (2011)CrossRefGoogle Scholar
  77. 77.
    Y.-S. Hwang, B.G. Chung, D. Ortmann, N. Hattori, H.-C. Moeller, A. Khademhosseini, Microwell-mediated control of embryoid body size regulates embryonic stem cell fate via differential expression of WNT5a and WNT11. Proc. Natl. Acad. Sci. 106(40), 16978–16983 (2009)CrossRefGoogle Scholar
  78. 78.
    J.M. Karp, J. Yeh, G. Eng, J. Fukuda, J. Blumling, K.-Y. Suh, J. Cheng, A. Mahdavi, J. Borenstein, R. Langer, A. Khademhosseini, Controlling size, shape and homogeneity of embryoid bodies using poly(ethylene glycol) microwells. Lab Chip 7(6), 786–794 (2007)CrossRefGoogle Scholar
  79. 79.
    J. Park, C.H. Cho, N. Parashurama, Y. Li, F. Berthiaume, M. Toner, A.W. Tilles, M.L. Yarmush, Microfabrication-based modulation of embryonic stem cell differentiation. Lab Chip 7(8), 1018–1028 (2007)CrossRefGoogle Scholar
  80. 80.
    M.D. Ungrin, C. Joshi, A. Nica, C. Bauwens, P.W. Zandstra, Reproducible, ultra high-throughput formation of multicellular organization from single cell suspension-derived human embryonic stem cell aggregates. PLoS One 3(2), e1565 (2008)CrossRefGoogle Scholar
  81. 81.
    H.-C. Moeller, M.K. Mian, S. Shrivastava, B.G. Chung, A. Khademhosseini, A microwell array system for stem cell culture. Biomaterials 29(6), 752–763 (2008)CrossRefGoogle Scholar
  82. 82.
    A.P. Napolitano, P. Chai, D.M. Dean, J.R. Morgan, Dynamics of the self-assembly of complex cellular aggregates on micromolded nonadhesive hydrogels. Tissue Eng. 13(8), 2087–2094 (2007)CrossRefGoogle Scholar
  83. 83.
    A.B. Bernard, C.-C. Lin, K.S. Anseth, A microwell cell culture platform for the aggregation of pancreatic β-cells. Tissue Eng. Part C Methods 18(8), 583–592 (2012)CrossRefGoogle Scholar
  84. 84.
    B.R. Lee, J.W. Hwang, Y.Y. Choi, S.F. Wong, Y.H. Hwang, D.Y. Lee, S.-H. Lee, In situ formation and collagen-alginate composite encapsulation of pancreatic islet spheroids. Biomaterials 33(3), 837–845 (2012)CrossRefGoogle Scholar
  85. 85.
    J. Dahlmann, G. Kensah, H. Kempf, D. Skvorc, A. Gawol, D.A. Elliott, G. Dräger, R. Zweigerdt, U. Martin, I. Gruh, The use of agarose microwells for scalable embryoid body formation and cardiac differentiation of human and murine pluripotent stem cells. Biomaterials 34(10), 2463–2471 (2013)CrossRefGoogle Scholar
  86. 86.
    Z. Zhao, J. Gu, Y. Zhao, Y. Guan, X. Zhu, Y. Zhang, Hydrogel thin film with swelling-induced wrinkling patterns for high-throughput generation of multicellular spheroids. Biomacromolecules 15(9), 3306–3312 (2014)CrossRefGoogle Scholar
  87. 87.
    A. Ivascu, M. Kubbies, Rapid generation of single-tumor spheroids for high-throughput cell function and toxicity analysis. J. Biomol. Screen. 11(8), 922–932 (2006)CrossRefGoogle Scholar
  88. 88.
    I. Aranaz, E. Martinez-Campos, M.E. Nash, M.G. Tardajos, H. Reinecke, C. Elvira, V. Ramos, J.L. Lopez-Lacomba, A. Gallardo, Pseudo-double network hydrogels with unique properties as supports for cell manipulation. J. Mater. Chem. B 2(24), 3839–3848 (2014)CrossRefGoogle Scholar
  89. 89.
    A. Gallardo, N. Lujan, H. Reinecke, C. García, A.D. Campo, J. Rodriguez-Hernandez, Chemical and topographical modification of polycarbonate surfaces through diffusion/photocuring processes of hydrogel precursors based on vinylpyrrolidone. Langmuir 33(7), 1614–1622 (2017)CrossRefGoogle Scholar
  90. 90.
    H. Yuk, T. Zhang, S. Lin, G.A. Parada, X. Zhao, Tough bonding of hydrogels to diverse non-porous surfaces. Nat. Mater. 15(2), 190–196 (2016)CrossRefGoogle Scholar
  91. 91.
    X. Zhu, P. Lu, W. Chen, J. Dong, Studies of UV crosslinked poly(N-vinylpyrrolidone) hydrogels by FTIR, Raman and solid-state NMR spectroscopies. Polymer 51(14), 3054–3063 (2010)CrossRefGoogle Scholar
  92. 92.
    M. Luo, Y. Hong, W. Yao, C. Huang, Q. Xu, Q. Wu, Facile removal of polyvinylpyrrolidone (PVP) adsorbates from Pt alloy nanoparticles. J. Mater. Chem. A 3(6), 2770–2775 (2015)CrossRefGoogle Scholar
  93. 93.
    K. Bruckmoser, K. Resch, T. Kisslinger, T. Lucyshyn, Measurement of interdiffusion in polymeric materials by applying Raman spectroscopy. Polym. Test. 46, 122–133 (2015)CrossRefGoogle Scholar
  94. 94.
    E. Martinez-Campos, A. Gallardo, N. Lujan, A. Santos-Coquillat, H. Reinecke, A.D. Campo, J. Rodriguez-Hernandez, Wrinkled hydrogel surfaces with modulated surface chemistry and topography: Evaluation as supports for cell growth and transplant. Submitted to ACS Appl. Biomater. (2018)Google Scholar
  95. 95.
    A. Gallardo, E. Martínez-Campos, C. García, A.L. Cortajarena, J. Rodríguez-Hernández, Hydrogels with modulated ionic load for mammalian cell harvesting with reduced bacterial adhesion. Biomacromolecules 18(5), 1521–1531 (2017)CrossRefGoogle Scholar
  96. 96.
    K. Nagase, M. Yamato, H. Kanazawa, T. Okano, Poly (N-isopropylacrylamide)-based thermoresponsive surfaces provide new types of biomedical applications. Biomaterials 153, 27–48 (2018)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Enrique Martinez
    • 1
    • 2
  • Alberto Gallardo
    • 1
    Email author
  • Ana Santos-Coquillat
    • 2
  • Noelia Lujan
    • 1
  • Helmut Reinecke
    • 1
  • Adolfo del Campo
    • 3
  • Juan Rodríguez-Hernandez
    • 1
    Email author
  1. 1.Instituto de Ciencia y Tecnología de Polímeros (ICTP), Consejo Superior de Investigaciones Científicas (CSIC)MadridSpain
  2. 2.Tissue Engineering Group; Instituto de Estudios Biofuncionales, Associated Unit to the ICTP-CSIC Polymer Functionalization GroupUniversidad Complutense de MadridMadridSpain
  3. 3.Instituto de Cerámica y Vidrio (ICV-CSIC)MadridSpain

Personalised recommendations