Advertisement

Control of Wrinkled Structures on Surface-Reformed Elastomers via Ion Beam Bombardment

  • C. M. González-HenríquezEmail author
  • M. A. Sarabia Vallejos
  • Juan Rodríguez-HernándezEmail author
Chapter

Abstract

In this work, we have reviewed the formation of ion beam-induced self-assembled wrinkle pattern on polymer surfaces, especially PDMS. By exposing the surface with a localized ion beam, it is possible to vary the chemical and/or mechanical properties of the material. Oxidation of the sample is procured, which entails the modification of their Young’s modulus, contact angle, and aspect ratio, among other characteristics. To control the wrinkle distribution and morphology, different parameters of ion beam process could be varied such as temperature, deposition time, different ion beam voltages, and ion implantation. Additionally, the ion fluence and exposure area are factors that also can produce a variety of patterns of different dimensions, from micron to submicron range or from simple one-dimensional wrinkles to complex hierarchical nested wrinkled patterns. Today, different applications have been studied using wrinkled pattern formation from the alignment of liquid crystals until piezoresistive tactile sensor devices.

Keywords

Wrinkles Ion beam-induced Polymer surfaces PDMS Oxidation 

Notes

Acknowledgments

The authors acknowledge financial support given by FONDECYT Grant N° 1170209. M.A. Sarabia acknowledges the financial support given by CONICYT through the doctoral program Scholarship Grant. J. Rodriguez-Hernandez acknowledges financial support from Ministerio de Economia y Competitividad (MINECO) (Project MAT2016-78437-R, FEDER EU) and finally VRAC Grant Number L216-04 of Universidad Tecnológica Metropolitana.

References

  1. 1.
    G. Grime, Ion beam patterning, in Nanolithography and Patterning Techniques in Microelectronics, ed. by D. Bucknall (Ed), (Woodhead Publishing Limited/CRC Press LLC, 2015), pp. 184–217Google Scholar
  2. 2.
    K. Ansari, J.A. van Kan, A.A. Bettiol, et al., Fabrication of high aspect ratio 100nm metallic stamps for nanoimprint lithography using proton beam writing. Appl. Phys. Lett. 85, 476–478 (2004)CrossRefGoogle Scholar
  3. 3.
    A.A. Tseng, Recent developments in nanofabrication using ion projection lithography. Small 1, 594–608 (2005)CrossRefGoogle Scholar
  4. 4.
    A. Piruska, I. Nikcevic, S.H. Lee, et al., The autofluorescence of plastic materials and chips measured under laser irradiation. Lab Chip 5, 1348–1354 (2005)CrossRefGoogle Scholar
  5. 5.
    F. Hua, Y. Sun, A. Gaur, et al., Polymer imprint lithography with molecular-scale resolution. Nano Lett. 4, 2467–2471 (2004)CrossRefGoogle Scholar
  6. 6.
    S.G. Charati, S.A. Stern, Diffusion of gases in silicone polymers: Molecular dynamics simulations. Macromolecules 31, 5529–5535 (1998)CrossRefGoogle Scholar
  7. 7.
    M.-C. Bélanger, Y. Marois, Hemocompatibility, biocompatibility, inflammatory and in vivo studies of primary reference materials low-density polyethylene and polydimethylsiloxane: A review. J. Biomed. Mater. Res. 58, 467–477 (2001)CrossRefGoogle Scholar
  8. 8.
    H.-G. Park, H.-C. Jeong, Y.H. Jung, et al., Control of the wrinkle structure on surface-reformed Poly(Dimethylsiloxane) via ion-beam bombardment. Sci. Rep. 5(1–8), 12356 (2015)CrossRefGoogle Scholar
  9. 9.
    X. Chen, J.W. Hutchinson, Herringbone buckling patterns of compressed thin films on compliant substrates. J. Appl. Mech. 71, 597–603 (2004)CrossRefGoogle Scholar
  10. 10.
    G.M. Whitesides, N. Bowden, S. Brittain, et al., Spontaneous formation of ordered structures in thin films of metals supported on an elastomeric polymer. Nature 393, 146–149 (1998)CrossRefGoogle Scholar
  11. 11.
    W.T.S. Huck, N. Bowden, P. Onck, et al., Ordering of spontaneously formed buckles on planar surfaces. Langmuir 16, 3497–3501 (2000)CrossRefGoogle Scholar
  12. 12.
    H. Hou, F. Li, Z. Su, et al., Light-reversible hierarchical patterns by dynamic photo-dimerization induced wrinkles. J. Mater. Chem. C 5, 8765–8773 (2017)CrossRefGoogle Scholar
  13. 13.
    C. Weissmantel, K. Bewilogua, D. Dietrich, et al., Structure and properties of quasi-amorphous films prepared by ion beam techniques. Thin Solid Films 72, 19–32 (1980)CrossRefGoogle Scholar
  14. 14.
    B.I. Prenitzer, C.A. Urbanik-Shannon, L.A. Giannuzzi, et al., The correlation between ion beam/material interactions and practical FIB specimen preparation. Microsc. Microanal. 9, 216–236 (2003)CrossRefGoogle Scholar
  15. 15.
    Z. Isiksacan, M.T. Guler, B. Aydogdu, et al., Rapid fabrication of microfluidic PDMS devices from reusable PDMS molds using laser ablation. J. Micromech. Microeng. 26(1–8), 035008 (2016)CrossRefGoogle Scholar
  16. 16.
    E.-H. Ko, H.-J. Kim, S.-M. Lee, et al., Stretchable Ag electrodes with mechanically tunable optical transmittance on wavy-patterned PDMS substrates. Sci. Rep. 7(1–12), 46739 (2017)CrossRefGoogle Scholar
  17. 17.
    D. Park, S.J. Shin, T.S. Oh, Stretchable characteristics of thin Au film on polydimethylsiloxane substrate with parylene intermediate layer for stretchable electronic packaging. J. Electron. Mater. 47, 9–17 (2018)CrossRefGoogle Scholar
  18. 18.
    C. Wu, T.G. Lin, Z. Zhan, et al., Fabrication of all-transparent polymer-based and encapsulated nanofluidic devices using nano-indentation lithography. Microsyst. Nanoeng. 3, 16084 (2017)CrossRefGoogle Scholar
  19. 19.
    H.-S. Liu, B.-C. Pan, G.-S. Liou, Highly transparent AgNW/PDMS stretchable electrodes for elastomeric electrochromic devices. Nanoscale 9, 2633–2639 (2017)CrossRefGoogle Scholar
  20. 20.
    E.P. Chan, A.J. Crosby, Spontaneous formation of stable aligned wrinkling patterns. Soft Matter 2, 324–328 (2006)CrossRefGoogle Scholar
  21. 21.
    D.P. Holmes, M. Ursiny, A.J. Crosby, Crumpled surface structures. Soft Matter 4, 82–85 (2008)CrossRefGoogle Scholar
  22. 22.
    J.W. Coburn, H.F. Winters, Plasma etching—A discussion of mechanisms. J. Vac. Sci. Technol. 16, 391–403 (1979)CrossRefGoogle Scholar
  23. 23.
    E. Cerda, L. Mahadevan, Geometry and physics of wrinkling. Phys. Rev. Lett. 90, 074302 (2003)CrossRefGoogle Scholar
  24. 24.
    H.-G. Park, Y.S. Park, K.Y. Park, et al., Homogeneous liquid crystal alignment on Poly(Vinylidene Fluoride-Trifluoroethylene) films subjected to ion-beam irradiation. Liq. Cryst. 42, 1262–1268 (2015)CrossRefGoogle Scholar
  25. 25.
    S.F. Ahmed, G.-H. Rho, K.-R. Lee, et al., High aspect ratio wrinkles on a soft polymer. Soft Matter 6, 5709–5714 (2010)CrossRefGoogle Scholar
  26. 26.
    A. Herzog, K. Uchiya, O. Karthaus, Pollen-like particles can be prepared by exposure of polymer microparticles to an electron beam. Matters (Zürich) 2016, 1–4Google Scholar
  27. 27.
    M.-W. Moon, S.H. Lee, J.-Y. Sun, et al., Wrinkled hard skins on polymers created by focused ion beam. Proc. Natl. Acad. Sci. 104, 1130–1133 (2007)CrossRefGoogle Scholar
  28. 28.
    S. Faruque Ahmed, S. Nagashima, J.Y. Lee, et al., Self-assembled folding of a biaxially compressed film on a compliant substrate. Carbon N. Y. 76, 105–112 (2014)CrossRefGoogle Scholar
  29. 29.
    H.-C. Jeong, H.-G. Park, Y.H. Jung, et al., Tailoring the orientation and periodicity of wrinkles using ion-beam bombardment. Langmuir 32, 7138–7143 (2016)CrossRefGoogle Scholar
  30. 30.
    B. Winton, M. Ionescu, S.X. Dou, The control of time-dependent buckling patterns in thin confined elastomer film. J. Mater. Res. 25, 1929–1935 (2010)CrossRefGoogle Scholar
  31. 31.
    D.T. Eddington, J.P. Puccinelli, D.J. Beebe, Thermal aging and reduced hydrophobic recovery of polydimethylsiloxane. Sensors Actuators B Chem. 114, 170–172 (2006)CrossRefGoogle Scholar
  32. 32.
    S. Hasan, Y. Jung, S. Kim, et al., A sensitivity enhanced MWCNT/PDMS tactile sensor using micropillars and low energy Ar+ ion beam treatment. Sensors 16(1–10), 93 (2016)CrossRefGoogle Scholar
  33. 33.
    H.-C. Jeong, H.-G. Park, J.H. Lee, et al., Localized ion-beam irradiation-induced wrinkle patterns. ACS Appl. Mater. Interfaces 7, 23216–23222 (2015)CrossRefGoogle Scholar
  34. 34.
    Y. Rahmawan, M.-W. Moon, K.-S. Kim, et al., Wrinkled, dual-scale structures of diamond-like carbon (DLC) for superhydrophobicity. Langmuir 26, 484–491 (2010)CrossRefGoogle Scholar
  35. 35.
    H.J. Bae, S. Bae, J. Yoon, et al., Self-organization of maze-like structures via guided wrinkling. Sci. Adv. 3(1–6), e1700071 (2017)CrossRefGoogle Scholar
  36. 36.
    S.-C. Jeng, S.-J. Hwang, Controlling the alignment of polyimide for liquid crystal devices, in High Performance Polymers - Polyimides Based - From Chemistry to Applications, (InTech, 2012), pp. 87–104Google Scholar
  37. 37.
    H.-C. Jeong, H.-G. Park, J.H. Lee, et al., Homogeneous self-aligned liquid crystals on wrinkled-wall Poly(Dimethylsiloxane) via localised ion-beam irradiation. Sci. Rep. 5, 8641 (2015)CrossRefGoogle Scholar
  38. 38.
    J.-H. Oh, T.-J. Ko, M.-W. Moon, et al., Nanostructured superhydrophobic silk fabric fabricated using the ion beam method. RSC Adv. 4, 38966–38973 (2014)CrossRefGoogle Scholar
  39. 39.
    M.-W. Moon, S.H. Lee, J.-Y. Sun, et al., Controlled formation of nanoscale wrinkling patterns on polymers using focused ion beam. Scr. Mater. 57, 747–750 (2007)CrossRefGoogle Scholar
  40. 40.
    B. Liu, J. Fu, Modulating surface stiffness of polydimethylsiloxane (PDMS) with kiloelectronvolt ion patterning. J. Micromech. Microeng. 25(1–9), 065006 (2015)CrossRefGoogle Scholar
  41. 41.
    Y. Kim, A.Y. Abuelfilat, S.P. Hoo, et al., Tuning the surface properties of hydrogel at the nanoscale with focused ion irradiation. Soft Matter 10, 8448–8456 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Departamento de Química, Facultad de Ciencias Naturales, Matemáticas y del Medio AmbienteUniversidad Tecnológica MetropolitanaSantiagoChile
  2. 2.Programa Institucional de Fomento a la Investigación, Desarrollo e InnovaciónUniversidad Tecnológica MetropolitanaSantiagoChile
  3. 3.Departamento de Ingeniería Estructural y GeotecniaPontificia Universidad Católica de Chile, Escuela de IngenieríaSantiagoChile
  4. 4.Instituto de Ingeniería Biológica y MédicaSantiagoChile
  5. 5.Departamento de Química Macromolecular AplicadaPolymer Functionalization Group. Instituto de Ciencia y Tecnología de Polímeros-Consejo Superior de Investigaciones Científicas (ICTP-CSIC)MadridSpain

Personalised recommendations