Advertisement

Strategies for the Fabrication of Wrinkled Polymer Surfaces

  • C. M. González-Henríquez
  • M. A. Sarabia Vallejos
  • Juan Rodríguez-HernándezEmail author
Chapter

Abstract

In this chapter, the different strategies to fabricate wrinkled surface morphologies are described. The methodologies have been classified as a function of the film structure, i.e., layered films, depth-wise gradient, or homogeneous films. Layered films are formed by different substrates and different top layers. The bilayer systems described in the literature have been organized and grouped, and finally, the wrinkle formation is described as a function of the stimulus employed. The same strategy has been employed to describe the wrinkle formation in depth-wise gradient and homogeneous films. As a result, a discussion about the particularities of each stimulus employed is reported.

Keywords

Polymer surfaces Wrinkles Surface instabilities Film structure Gradient polymer surfaces 

Notes

Acknowledgments

The authors acknowledge financial support given by FONDECYT grant N° 1170209. M.A. Sarabia acknowledges the financial support given by CONICYT through the doctoral program scholarship grant. J. Rodriguez-Hernandez acknowledges financial support from Ministerio de Economia y Competitividad (MINECO) (Project MAT2016-78437-R, FEDER EU). Finally, this study was funded by VRAC grant number L216-04 of Universidad Tecnológica Metropolitana.

References

  1. 1.
    P. Gruner, M. Arlt, T. Fuhrmann-Lieker, Surface wrinkling induced by photofluidization of low molecular azo glasses. ChemPhysChem 14(2), 424–430 (2013)CrossRefGoogle Scholar
  2. 2.
    N. Lambricht, T. Pardoen, S. Yunus, Giant stretchability of thin gold films on rough elastomeric substrates. Acta Mater. 61(2), 540–547 (2013)CrossRefGoogle Scholar
  3. 3.
    M. Ramanathan, B.S. Lokitz, J.M. Messman, C.M. Stafford, S.M. Kilbey II, Spontaneous wrinkling in azlactone-based functional polymer thin films in 2D and 3D geometries for guided nanopatterning. J. Mater. Chem. C 1(11), 2097–2101 (2013)CrossRefGoogle Scholar
  4. 4.
    Z. Wu, N. Bouklas, R. Huang, Swell-induced surface instability of hydrogel layers with material properties varying in thickness direction. Int. J. Solids Struct. 50(3–4), 578–587 (2013)CrossRefGoogle Scholar
  5. 5.
    Z. Chen, Y.Y. Kim, S. Krishnaswamy, Anisotropic wrinkle formation on shape memory polymer substrates. J. Appl. Phys. 112(12) (2012)CrossRefGoogle Scholar
  6. 6.
    Y.-C. Chen, A.J. Crosby, Wrinkling of inhomogeneously strained thin polymer films. Soft Matter 9(1), 43–47 (2013)CrossRefGoogle Scholar
  7. 7.
    J. Rodríguez-Hernández, Wrinkled interfaces: Taking advantage of surface instabilities to pattern polymer surfaces. Prog. Polym. Sci. 42, 1–41 (2015)CrossRefGoogle Scholar
  8. 8.
    J. Huang, M. Juszkiewicz, W.H. De Jeu, E. Cerda, T. Emrick, N. Menon, T.P. Russell, Capillary wrinkling of floating thin polymer films. Science 317(5838), 650–653 (2007)CrossRefGoogle Scholar
  9. 9.
    D. Vella, M. Adda-Bedia, E. Cerda, Capillary wrinkling of elastic membranes. Soft Matter 6(22), 5778–5782 (2010)CrossRefGoogle Scholar
  10. 10.
    D.P. Holmes, A.J. Crosby, Draping films: A wrinkle to fold transition. Phys. Rev. Lett. 105(3), 038303 (2010)CrossRefGoogle Scholar
  11. 11.
    L. Pocivavsek, R. Dellsy, A. Kern, S. Johnson, B. Lin, K.Y.C. Lee, E. Cerda, Stress and fold localization in thin elastic membranes. Science 320(5878), 912–916 (2008)CrossRefGoogle Scholar
  12. 12.
    N. Sridhar, D. Srolovitz, Z. Suo, Kinetics of buckling of a compressed film on a viscous substrate. Appl. Phys. Lett. 78(17), 2482–2484 (2001)CrossRefGoogle Scholar
  13. 13.
    R. Huang, Z. Suo, Wrinkling of a compressed elastic film on a viscous layer. J. Appl. Phys. 91(3), 1135–1142 (2002)CrossRefGoogle Scholar
  14. 14.
    S. Chatterjee, C. McDonald, J. Niu, S.S. Velankar, P. Wang, R. Huang, Wrinkling and folding of thin films by viscous stress. Soft Matter 11(9), 1814–1827 (2015)CrossRefGoogle Scholar
  15. 15.
    R. Huang, Kinetic wrinkling of an elastic film on a viscoelastic substrate. J. Mech. Phys. Solids 53(1), 63–89 (2005)CrossRefGoogle Scholar
  16. 16.
    S. Im, R. Huang, Evolution of wrinkles in elastic-viscoelastic bilayer thin films. J. Appl. Mech. 72(6), 955–961 (2005)CrossRefGoogle Scholar
  17. 17.
    R. Huang, S.H. Im, Dynamics of wrinkle growth and coarsening in stressed thin films. Phys. Rev. E 74(2), 026214 (2006)CrossRefGoogle Scholar
  18. 18.
    K. Dalnoki-Veress, J. Forrest, J. Dutcher, Mechanical confinement effects on the phase separation morphology of polymer blend thin films. Phys. Rev. E 57(5), 5811 (1998)CrossRefGoogle Scholar
  19. 19.
    P.J. Yoo, K.Y. Suh, S.Y. Park, H.H. Lee, Physical self-assembly of microstructures by anisotropic buckling. Adv. Mater. 14(19), 1383–1387 (2002)CrossRefGoogle Scholar
  20. 20.
    T. Okayasu, H.L. Zhang, D.G. Bucknall, G.A.D. Briggs, Spontaneous formation of ordered lateral patterns in polymer thin-film structures. Adv. Funct. Mater. 14(11), 1081–1088 (2004)CrossRefGoogle Scholar
  21. 21.
    P.J. Yoo, H.H. Lee, Morphological diagram for metal/polymer bilayer wrinkling: Influence of thermomechanical properties of polymer layer. Macromolecules 38(7), 2820–2831 (2005)CrossRefGoogle Scholar
  22. 22.
    E.P. Chan, K.A. Page, S.H. Im, D.L. Patton, R. Huang, C.M. Stafford, Viscoelastic properties of confined polymer films measured via thermal wrinkling. Soft Matter 5(23), 4638–4641 (2009)CrossRefGoogle Scholar
  23. 23.
    P.J. Yoo, H.H. Lee, Evolution of a stress-driven pattern in thin bilayer films: Spinodal wrinkling. Phys. Rev. Lett. 91(15), 154502 (2003)CrossRefGoogle Scholar
  24. 24.
    K. Srinivasan, G. Subbarayan, T. Siegmund, Wrinkling on irreversibly deforming foundations. Thin Solid Films 520(17), 5671–5682 (2012)CrossRefGoogle Scholar
  25. 25.
    A. El Haitami, F. Bretagnol, P. Assuid, G. Petitet, S. Cantournet, L. Corté, Erasable and reversible wrinkling of halogenated rubber surfaces. Langmuir 29(50), 15664–15672 (2013)CrossRefGoogle Scholar
  26. 26.
    N. Bowden, W.T.S. Huck, K.E. Paul, G.M. Whitesides, The controlled formation of ordered, sinusoidal structures by plasma oxidation of an elastomeric polymer. Appl. Phys. Lett. 75(17), 2557–2559 (1999)CrossRefGoogle Scholar
  27. 27.
    D.B.H. Chua, H.T. Ng, S.F.Y. Li, Spontaneous formation of complex and ordered structures on oxygen-plasma-treated elastomeric polydimethylsiloxane. Appl. Phys. Lett. 76(6), 721–723 (2000)CrossRefGoogle Scholar
  28. 28.
    C.-C. Fu, A. Grimes, M. Long, C.G.L. Ferri, B.D. Rich, S. Ghosh, S. Ghosh, L.P. Lee, A. Gopinathan, M. Khine, Tunable Nanowrinkles on shape memory polymer sheets. Adv. Mater. 21(44), 4472 (2009)CrossRefGoogle Scholar
  29. 29.
    X.M. Zhao, Y.N. Xia, O.J.A. Schueller, D. Qin, G.M. Whitesides, Fabrication of microstructures using shrinkable polystyrene films. Sens. Actuators A Phys. 65(2–3), 209–217 (1998)CrossRefGoogle Scholar
  30. 30.
    Y. Zhao, W.M. Huang, Y.Q. Fu, Formation of micro/nano-scale wrinkling patterns atop shape memory polymers. J. Micromech. Microeng. 21(6) (2011)CrossRefGoogle Scholar
  31. 31.
    M.D. Huntington, C.J. Engel, A.J. Hryn, T.W. Odom, Polymer Nanowrinkles with continuously tunable wavelengths. ACS Appl. Mater. Interfaces 5(13), 6438–6442 (2013)CrossRefGoogle Scholar
  32. 32.
    P. Kim, M. Abkarian, H.A. Stone, Hierarchical folding of elastic membranes under biaxial compressive stress. Nat. Mater. 10(12), 952–957 (2011)CrossRefGoogle Scholar
  33. 33.
    A. Verma, A. Sharma, G.U. Kulkarni, Ultrafast large-area micropattern generation in nonabsorbing polymer thin films by pulsed laser diffraction. Small 7(6), 758–765 (2011)CrossRefGoogle Scholar
  34. 34.
    M.-W. Moon, S.H. Lee, J.-Y. Sun, K.H. Oh, A. Vaziri, J.W. Hutchinson, Wrinkled hard skins on polymers created by focused ion beam. Proc. Natl. Acad. Sci. U. S. A. 104(4), 1130–1133 (2007)CrossRefGoogle Scholar
  35. 35.
    N. Bowden, S. Brittain, A.G. Evans, J.W. Hutchinson, G.M. Whitesides, Spontaneous formation of ordered structures in thin films of metals supported on an elastomeric polymer. Nature 393(6681), 146–149 (1998)CrossRefGoogle Scholar
  36. 36.
    W.T.S. Huck, N. Bowden, P. Onck, T. Pardoen, J.W. Hutchinson, G.M. Whitesides, Ordering of spontaneously formed buckles on planar surfaces. Langmuir 16(7), 3497–3501 (2000)CrossRefGoogle Scholar
  37. 37.
    P.J. Yoo, K.Y. Suh, H. Kang, H.H. Lee, Polymer elasticity-driven wrinkling and coarsening in high temperature buckling of metal-capped polymer thin films. Phys. Rev. Lett. 93(3) (2004)Google Scholar
  38. 38.
    S.J. Kwon, P.J. Yoo, H.H. Lee, Wave interactions in buckling: Self-organization of a metal surface on a structured polymer layer. Appl. Phys. Lett. 84(22), 4487–4489 (2004)CrossRefGoogle Scholar
  39. 39.
    P.J. Yoo, S.Y. Park, S.J. Kwon, K.Y. Suh, H.H. Lee, Microshaping metal surfaces by wave-directed self-organization. Appl. Phys. Lett. 83(21), 4444–4446 (2003)CrossRefGoogle Scholar
  40. 40.
    P.J. Yoo, H.H. Lee, Evolution of a stress-driven pattern in thin bilayer films: Spinodal wrinkling. Phys. Rev. Lett. 91(15) (2003)Google Scholar
  41. 41.
    H. Vandeparre, S. Gabriele, F. Brau, C. Gay, K.K. Parker, P. Damman, Hierarchical wrinkling patterns. Soft Matter 6(22), 5751–5756 (2010)CrossRefGoogle Scholar
  42. 42.
    C.M. Stafford, B.D. Vogt, C. Harrison, D. Julthongpiput, R. Huang, Elastic moduli of ultrathin amorphous polymer films. Macromolecules 39(15), 5095–5099 (2006)CrossRefGoogle Scholar
  43. 43.
    K.Y. Suh, S.M. Seo, P.J. Yoo, H.H. Lee, Formation of regular nanoscale undulations on a thin polymer film imprinted by a soft mold. J. Chem. Phys. 124(2) (2006)CrossRefGoogle Scholar
  44. 44.
    M. Watanabe, H. Shirai, T. Hirai, Wrinkled polypyrrole electrode for electroactive polymer actuators. J. Appl. Phys. 92(8), 4631–4637 (2002)CrossRefGoogle Scholar
  45. 45.
    J. Yang, S. Damle, S. Maiti, S.S. Velankar, Stretching-induced wrinkling in plastic–rubber composites. Soft Matter 13(4), 776–787 (2017)CrossRefGoogle Scholar
  46. 46.
    D. Rhee, W.K. Lee, T.W. Odom, Crack-free, soft wrinkles enable switchable anisotropic wetting. Angew. Chem. Int. Ed. 56(23), 6523–6527 (2017)CrossRefGoogle Scholar
  47. 47.
    T. Boudou, T. Crouzier, K. Ren, G. Blin, C. Picart, Multiple functionalities of polyelectrolyte multilayer films: New biomedical applications. Adv. Mater. 22(4), 441–467 (2010)CrossRefGoogle Scholar
  48. 48.
    Y. Wang, A.S. Angelatos, F. Caruso, Template synthesis of nanostructured materials via layer-by-layer assembly. Chem. Mater. 20(3), 848–858 (2008)CrossRefGoogle Scholar
  49. 49.
    Z. Tang, Y. Wang, P. Podsiadlo, N.A. Kotov, Biomedical applications of layer-by-layer assembly: From biomimetics to tissue engineering. Adv. Mater. 18(24), 3203–3224 (2006)CrossRefGoogle Scholar
  50. 50.
    P.T. Hammond, Form and function in multilayer assembly: New applications at the nanoscale. Adv. Mater. 16(15), 1271–1293 (2004)CrossRefGoogle Scholar
  51. 51.
    C. Lu, H. Mohwald, A. Fery, A lithography-free method for directed colloidal crystal assembly based on wrinkling. Soft Matter 3(12), 1530–1536 (2007)CrossRefGoogle Scholar
  52. 52.
    J. Kim, H.H. Lee, Wave formation by heating in thin metal film on an elastomer. J. Polym. Sci. B Polym. Phys. 39(11), 1122–1128 (2001)CrossRefGoogle Scholar
  53. 53.
    T. Okayasu, H.L. Zhang, D.G. Bucknal, G. Andrew, D. Briggs, Spontaneous formation of ordered lateral patterns in polymer thin-film structures. Adv. Funct. Mater. 14(11), 1081–1088 (2004)CrossRefGoogle Scholar
  54. 54.
    P.J. Yoo, Invited paper: Fabrication of complexly patterned wavy structures using self-organized anisotropic wrinkling. Electron. Mater. Lett. 7(1), 17–23 (2011)CrossRefGoogle Scholar
  55. 55.
    P.J. Yoo, H.H. Lee, Complex pattern formation by adhesion-controlled anisotropic wrinkling. Langmuir 24(13), 6897–6902 (2008)CrossRefGoogle Scholar
  56. 56.
    C. Jiang, S. Singamaneni, E. Merrick, V.V. Tsukruk, Complex buckling instability patterns of nanomembranes with encapsulated gold nanoparticle arrays. Nano Lett. 6(10), 2254–2259 (2006)CrossRefGoogle Scholar
  57. 57.
    T.R. Hendricks, I. Lee, Wrinkle-free nanomechanical film: Control and prevention of polymer film buckling. Nano Lett. 7(2), 372–379 (2006)CrossRefGoogle Scholar
  58. 58.
    D. Mertz, J. Hemmerlé, J. Mutterer, S. Ollivier, J.-C. Voegel, P. Schaaf, P. Lavalle, Mechanically responding Nanovalves based on polyelectrolyte multilayers. Nano Lett. 7(3), 657–662 (2007)CrossRefGoogle Scholar
  59. 59.
    C.M. Stafford, C. Harrison, K.L. Beers, A. Karim, E.J. Amis, M.R. Vanlandingham, H.C. Kim, W. Volksen, R.D. Miller, E.E. Simonyi, A buckling-based metrology for measuring the elastic moduli of polymeric thin films. Nat. Mater. 3(8), 545–550 (2004)CrossRefGoogle Scholar
  60. 60.
    A.J. Nolte, M.F. Rubner, R.E. Cohen, Determining the young’s modulus of polyelectrolyte multilayer films via stress-induced mechanical buckling instabilities. Macromolecules 38(13), 5367–5370 (2005)CrossRefGoogle Scholar
  61. 61.
    R.C. Hedden, H. Saxena, C. Cohen, Mechanical properties and swelling behavior of end-linked poly(diethylsiloxane) networks. Macromolecules 33(23), 8676–8684 (2000)CrossRefGoogle Scholar
  62. 62.
    K. Efimenko, M. Rackaitis, E. Manias, A. Vaziri, L. Mahadevan, J. Genzer, Nested self-similar wrinkling patterns in skins. Nat. Mater. 4(4), 293 (2005)CrossRefGoogle Scholar
  63. 63.
    T. Ohzono, M. Shimomura, Ordering of microwrinkle patterns by compressive strain. Phys. Rev. B 69(13), 132202 (2004)CrossRefGoogle Scholar
  64. 64.
    T. Ohzono, M. Shimomura, Geometry-dependent stripe rearrangement processes induced by strain on preordered microwrinkle patterns. Langmuir 21(16), 7230–7237 (2005)CrossRefGoogle Scholar
  65. 65.
    P.-C. Lin, S. Yang, Spontaneous formation of one-dimensional ripples in transit to highly ordered two-dimensional herringbone structures through sequential and unequal biaxial mechanical stretching. Appl. Phys. Lett. 90(24), 241903 (2007)CrossRefGoogle Scholar
  66. 66.
    W.M. Choi, J. Song, D.-Y. Khang, H. Jiang, Y.Y. Huang, J.A. Rogers, Biaxially stretchable “wavy” silicon nanomembranes. Nano Lett. 7(6), 1655–1663 (2007)CrossRefGoogle Scholar
  67. 67.
    H.S. Kim, A.J. Crosby, Solvent-responsive surface via wrinkling instability. Adv. Mater. 23(36), 4188 (2011)CrossRefGoogle Scholar
  68. 68.
    E.P. Chan, A.J. Crosby, Fabricating microlens arrays by surface wrinkling. Adv. Mater. 18(24), 3238–3242 (2006)CrossRefGoogle Scholar
  69. 69.
    J.Y. Chung, J.-H. Lee, K.L. Beers, C.M. Stafford, Stiffness, strength, and ductility of nanoscale thin films and membranes: A combined wrinkling–cracking methodology. Nano Lett. 11(8), 3361–3365 (2011)CrossRefGoogle Scholar
  70. 70.
    J.Y. Chung, A.J. Nolte, C.M. Stafford, Diffusion-controlled, self-organized growth of symmetric wrinkling patterns. Adv. Mater. 21(13), 1358–1362 (2009)CrossRefGoogle Scholar
  71. 71.
    E.P. Chan, E.J. Smith, R.C. Hayward, A.J. Crosby, Surface wrinkles for smart adhesion. Adv. Mater. 20(4), 711–716 (2008)CrossRefGoogle Scholar
  72. 72.
    D. Breid, A.J. Crosby, Surface wrinkling behavior of finite circular plates. Soft Matter 5(2), 425–431 (2009)CrossRefGoogle Scholar
  73. 73.
    H. Vandeparre, P. Damman, Wrinkling of stimuloresponsive surfaces: Mechanical instability coupled to diffusion. Phys. Rev. Lett. 101(12), 124301 (2008)CrossRefGoogle Scholar
  74. 74.
    H. Vandeparre, J. Léopoldès, C. Poulard, S. Desprez, G. Derue, C. Gay, P. Damman, Slippery or sticky boundary conditions: Control of wrinkling in metal-capped thin polymer films by selective adhesion to substrates. Phys. Rev. Lett. 99(18), 188302 (2007)CrossRefGoogle Scholar
  75. 75.
    S.K. Basu, A.V. McCormick, L.E. Scriven, Stress generation by solvent absorption and wrinkling of a cross-linked coating atop a viscous or elastic base. Langmuir 22(13), 5916–5924 (2006)CrossRefGoogle Scholar
  76. 76.
    H.S. Kim, A.J. Crosby, Solvent-responsive surface via wrinkling instability. Adv. Mater. 23(36), 4188–4192 (2011)CrossRefGoogle Scholar
  77. 77.
    M. Guvendiren, S. Yang, J.A. Burdick, Swelling-induced surface patterns in hydrogels with gradient crosslinking density. Adv. Funct. Mater. 19(19), 3038–3045 (2009)CrossRefGoogle Scholar
  78. 78.
    M. Guvendiren, J.A. Burdick, S. Yang, Kinetic study of swelling-induced surface pattern formation and ordering in hydrogel films with depth-wise crosslinking gradient. Soft Matter 6(9), 2044–2049 (2010)CrossRefGoogle Scholar
  79. 79.
    S. Basu, L.E. Scriven, L.F. Francis, A.V. McCormick, Mechanism of wrinkle formation in curing coatings. Prog. Org. Coat. 53(1), 1–16 (2005)CrossRefGoogle Scholar
  80. 80.
    S. Yang, K. Khare, P.-C. Lin, Harnessing surface wrinkle patterns in soft matter. Adv. Funct. Mater. 20(16), 2550–2564 (2010)CrossRefGoogle Scholar
  81. 81.
    D. Chandra, A.J. Crosby, Self-wrinkling of UV-cured polymer films. Adv. Mater. 23(30), 3441–3445 (2011)CrossRefGoogle Scholar
  82. 82.
    Y. Li, J.J. Peterson, S.B. Jhaveri, K.R. Carter, Patterned polymer films via reactive Silane infusion-induced wrinkling. Langmuir 29(14), 4632–4639 (2013)CrossRefGoogle Scholar
  83. 83.
    S. Basu, L.E. Scriven, L.F. Francis, A.V. McCormick, V. Reichert, Wrinkling of epoxy powder coatings. J. Appl. Polym. Sci. 98(1), 116–129 (2005)CrossRefGoogle Scholar
  84. 84.
    J.M. Torres, C.M. Stafford, B.D. Vogt, Photoinitator surface segregation induced instabilities from polymerization of a liquid coating on a rigid substrate. Soft Matter 8(19), 5225–5232 (2012)CrossRefGoogle Scholar
  85. 85.
    Y. Gan, X. Jiang, J. Yin, Self-wrinkling patterned surface of photocuring coating induced by the fluorinated POSS containing thiol groups (F-POSS-SH) as the reactive Nanoadditive. Macromolecules 45(18), 7520–7526 (2012)CrossRefGoogle Scholar
  86. 86.
    R. Schubert, T. Scherzer, M. Hinkefuss, B. Marquardt, J. Vogel, M.R. Buchmeiser, VUV-induced micro-folding of acrylate-based coatings. 1. Real-time methods for the determination of the micro-folding kinetics. Surf. Coat. Technol. 203(13), 1844–1849 (2009)CrossRefGoogle Scholar
  87. 87.
    T. Tanaka, S.T. Sun, Y. Hirokawa, S. Katayama, J. Kucera, Y. Hirose, T. Amiya, Mechanical instability of gels at the phase-transition. Nature 325(6107), 796–798 (1987)CrossRefGoogle Scholar
  88. 88.
    E.S. Matsuo, T. Tanaka, Patterns in shrinking gels. Nature 358(6386), 482–485 (1992)CrossRefGoogle Scholar
  89. 89.
    T. Mizoue, Y. Aoki, M. Tokita, H. Honjo, H.J. Barraza, H. Katsuragi, Control of polymer gel surface pattern formation and its three dimensional measurement method. J. Polym. Eng. 30(9), 523–534 (2010)CrossRefGoogle Scholar
  90. 90.
    T. Mizoue, M. Tokita, H. Honjo, H.J. Barraza, H. Katsuragi, The effective surface roughness scaling of the gelation surface pattern formation, in Gels: Structures, Properties, and Functions: Fundamentals and Applications, ed. by M. Tokita, K. Nishinari (Springer, Berlin, 2009), pp. 63–67CrossRefGoogle Scholar
  91. 91.
    M. Tokita, S. Suzuki, K. Miyamoto, T. Komai, Confocal laser scanning microscope imaging of a pattern in shrinking gel. J. Phys. Soc. Jpn. 68(2), 330–333 (1999)CrossRefGoogle Scholar
  92. 92.
    M. Tokita, K. Miyamoto, T. Komai, Polymer network dynamics in shrinking patterns of gels. J. Chem. Phys. 113(4), 1647–1650 (2000)CrossRefGoogle Scholar
  93. 93.
    E.P. Chan, E.J. Smith, R.C. Hayward, A.J. Crosby, Surface wrinkles for smart adhesion. Adv. Mater. 20(4), 711 (2008)CrossRefGoogle Scholar
  94. 94.
    K. Huraux, T. Narita, B. Bresson, C. Frétigny, F. Lequeux, Wrinkling of a nanometric glassy skin/crust induced by drying in poly (vinyl alcohol) gels. Soft Matter 8(31), 8075–8081 (2012)CrossRefGoogle Scholar
  95. 95.
    B. Li, Y.-P. Cao, X.-Q. Feng, H. Gao, Mechanics of morphological instabilities and surface wrinkling in soft materials: A review. Soft Matter 8(21), 5728–5745 (2012)CrossRefGoogle Scholar
  96. 96.
    E.S. Matsuo, T. Tanaka, Patterns in shrinking gels. Nature 358(6386), 482 (1992)CrossRefGoogle Scholar
  97. 97.
    L. Pauchard, C. Allain, Stable and unstable surface evolution during the drying of a polymer solution drop. Phys. Rev. E 68(5), 052801 (2003)CrossRefGoogle Scholar
  98. 98.
    L. Pauchard, C. Allain, Buckling instability induced by polymer solution drying. Europhys. Lett. 62(6), 897–903 (2003)CrossRefGoogle Scholar
  99. 99.
    R. Rizzieri, L. Mahadevan, A. Vaziri, A. Donald, Superficial wrinkles in stretched, drying gelatin films. Langmuir 22(8), 3622–3626 (2006)CrossRefGoogle Scholar
  100. 100.
    J.M. Katzenstein, D.W. Janes, J.D. Cushen, N.B. Hira, D.L. McGuffin, N.A. Prisco, C.J. Ellison, Patterning by photochemically directing the Marangoni effect. ACS Macro Lett. 1(10), 1150–1154 (2012)CrossRefGoogle Scholar
  101. 101.
    A.R. Jones, C.B. Kim, S.X. Zhou, H. Ha, R. Katsumata, G. Blachut, R.T. Bonnecaze, C.J. Ellison, Generating large thermally stable Marangoni-driven topography in polymer films by stabilizing the surface energy gradient. Macromolecules 50(11), 4588–4596 (2017)CrossRefGoogle Scholar
  102. 102.
    B.K. Chae, D.W. Janes, D.L. McGuffin, C.J. Ellison, Surface energy gradient driven convection for generating nanoscale and microscale patterned polymer films using photosensitizers. J. Polym. Sci. B Polym. Phys. 52(18), 1195–1202 (2014)CrossRefGoogle Scholar
  103. 103.
    A. Lasagni, C. Holzapfel, F. Mücklich, Periodic pattern formation of intermetallic phases with long range order by laser interference metallurgy. Adv. Eng. Mater. 7(6), 487–492 (2005)CrossRefGoogle Scholar
  104. 104.
    F. Mücklich, A. Lasagni, C. Daniel, Laser interference metallurgy—Periodic surface patterning and formation of intermetallics. Intermetallics 13(3–4), 437–442 (2005)CrossRefGoogle Scholar
  105. 105.
    A.F. Lasagni, D.F. Acevedo, C.A. Barbero, F. Mücklich, One-step production of organized surface architectures on polymeric materials by direct laser interference patterning. Adv. Eng. Mater. 9(1–2), 99–103 (2007)CrossRefGoogle Scholar
  106. 106.
    F. Yu, P. Li, H. Shen, S. Mathur, C.-M. Lehr, U. Bakowsky, F. Mücklich, Laser interference lithography as a new and efficient technique for micropatterning of biopolymer surface. Biomaterials 26(15), 2307–2312 (2005)CrossRefGoogle Scholar
  107. 107.
    D.A. Acevedo, A.F. Lasagni, C.A. Barbero, F. Mücklich, Simple fabrication method of conductive polymeric arrays by using direct laser interference micro-/Nanopatterning. Adv. Mater. 19(9), 1272–1275 (2007)CrossRefGoogle Scholar
  108. 108.
    A. Lasagni, D. Acevedo, C. Barbero, F. Mücklich, Advanced design of conductive polymeric arrays with controlled electrical resistance using direct laser interference patterning. Appl. Phys. A 91(3), 369–373 (2008)CrossRefGoogle Scholar
  109. 109.
    A.F. Lasagni, J.L. Hendricks, C.M. Shaw, D. Yuan, D.C. Martin, S. Das, Direct laser interference patterning of poly (3, 4-ethylene dioxythiophene)-poly (styrene sulfonate)(PEDOT-PSS) thin films. Appl. Surf. Sci. 255(22), 9186–9192 (2009)CrossRefGoogle Scholar
  110. 110.
    A. Lasagni, D. Acevedo, C. Barbero, F. Mücklich, Direct patterning of polystyrene–polymethyl methacrylate copolymer by means of laser interference lithography using UV laser irradiation. Polym. Eng. Sci. 48(12), 2367–2372 (2008)CrossRefGoogle Scholar
  111. 111.
    E. Rebollar, S. Pérez, J.J. Hernández, I. Martín-Fabiani, D.R. Rueda, T.A. Ezquerra, M. Castillejo, Assessment and formation mechanism of laser-induced periodic surface structures on polymer spin-coated films in real and reciprocal space. Langmuir 27(9), 5596–5606 (2011)CrossRefGoogle Scholar
  112. 112.
    E. Rebollar, D.R. Rueda, I. Martín-Fabiani, Á. Rodríguez-Rodríguez, M.-C. García-Gutiérrez, G. Portale, M. Castillejo, T.A. Ezquerra, In situ monitoring of laser-induced periodic surface structures formation on polymer films by grazing incidence small-angle X-ray scattering. Langmuir 31(13), 3973–3981 (2015)CrossRefGoogle Scholar
  113. 113.
    Á. Rodríguez-Rodríguez, E. Rebollar, M. Soccio, T.A. Ezquerra, D.R. Rueda, J.V. Garcia-Ramos, M. Castillejo, M.-C. Garcia-Gutierrez, Laser-induced periodic surface structures on conjugated polymers: Poly(3-hexylthiophene). Macromolecules 48(12), 4024–4031 (2015)CrossRefGoogle Scholar
  114. 114.
    I. Michaljaničová, P. Slepička, S. Rimpelová, N. Slepičková Kasálková, V. Švorčík, Regular pattern formation on surface of aromatic polymers and its cytocompatibility. Appl. Surf. Sci. 370, 131–141 (2016)CrossRefGoogle Scholar
  115. 115.
    Z. Guosheng, P. Fauchet, A. Siegman, Growth of spontaneous periodic surface structures on solids during laser illumination. Phys. Rev. B 26(10), 5366 (1982)CrossRefGoogle Scholar
  116. 116.
    A. Barborica, I. Mihailescu, V. Teodorescu, Dynamical evolution of the surface microrelief under multiple-pulse-laser irradiation: An analysis based on surface-scattered waves. Phys. Rev. B 49(12), 8385 (1994)CrossRefGoogle Scholar
  117. 117.
    S. Baudach, J. Bonse, W. Kautek, Ablation experiments on polyimide with femtosecond laser pulses. Appl. Phys. A 69(1), S395–S398 (1999)CrossRefGoogle Scholar
  118. 118.
    S. Baudach, J. Krüger, W. Kautek, Femtosecond laser processing of soft materials. Rev. Laser Eng. 29(11), 705–709 (2001)CrossRefGoogle Scholar
  119. 119.
    M. Forster, W. Kautek, N. Faure, E. Audouard, R. Stoian, Periodic nanoscale structures on polyimide surfaces generated by temporally tailored femtosecond laser pulses. Phys. Chem. Chem. Phys. 13(9), 4155–4158 (2011)CrossRefGoogle Scholar
  120. 120.
    W. Biegel, D. Bliuerle Laser Processing and Chemistry (Springer, Berlin/Heidelberg/New York, 1996). ISBN: 3-540-60541-X, DM 128, 00. Berichte der Bunsengesellschaft für physikalische Chemie 101(6), 984–984 (1997)Google Scholar
  121. 121.
    E. Rebollar, J.R.V. de Aldana, I. Martín-Fabiani, M. Hernández, D.R. Rueda, T.A. Ezquerra, C. Domingo, P. Moreno, M. Castillejo, Assessment of femtosecond laser induced periodic surface structures on polymer films. Phys. Chem. Chem. Phys. 15(27), 11287–11298 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • C. M. González-Henríquez
    • 1
    • 2
  • M. A. Sarabia Vallejos
    • 3
    • 4
  • Juan Rodríguez-Hernández
    • 5
    Email author
  1. 1.Departamento de Química, Facultad de Ciencias Naturales, Matemáticas y del Medio AmbienteUniversidad Tecnológica MetropolitanaSantiagoChile
  2. 2.Programa Institucional de Fomento a la Investigación, Desarrollo e InnovaciónUniversidad Tecnológica MetropolitanaSan JoaquínChile
  3. 3.Escuela de Ingeniería, Departamento de Ingeniería Estructural y GeotecniaPontificia Universidad Católica de ChileSantiagoChile
  4. 4.Instituto de Ingeniería Biológica y MédicaSantiagoChile
  5. 5.Departamento de Química Macromolecular AplicadaPolymer Functionalization Group, Instituto de Ciencia y Tecnología de Polímeros-Consejo Superior de Investigaciones Científicas (ICTP-CSIC)MadridSpain

Personalised recommendations