Other Applications of Wrinkled Polymer Surfaces

  • C. M. González-HenríquezEmail author
  • M. A. Sarabia Vallejos
  • Juan Rodríguez-HernándezEmail author


In a previous chapter of this book, some biological/biomedical polymeric devices in which wrinkled patterns were formed on the surface were fully revised. Particularly, different materials, with interesting thermal, optical, and mechanical properties, which could be used for several applications like generation of ultrasensitive force/pressure sensors or actuators, smart windows, controllable electronics, conductive deformable devices, shape memory polymers, electrochromic devices, organic light-emitting diode (OLED), and photovoltaic/solar cells, or for the creation of anti-counterfeiting devices, will be reviewed in this chapter. As an example, a polymethylmethacrylate/poly(dimethylsiloxane) (PMMA/PDMS) bilayered system is used to generate selective information storage surfaces where, after repetitive UV and thermal cycles, the patterns printed on the top can be erased or recovered according to the application desired. We expect that several of the usages for wrinkled polymeric surfaces revised in this chapter could be applied in the future in different fields like automotive, aeronautics, information storage, and communications, among others.


Shape memory polymers Ultrasensitive sensors/actuators Smart windows/displays Shrinkable controllable electronics Photovoltaic/solar cells Anti-counterfeiting devices 



The authors acknowledge the financial support given by FONDECYT Grant N° 1170209. M.A. Sarabia acknowledges the financial support given by CONICYT through the doctoral program scholarship grant. J. Rodríguez-Hernández acknowledges the financial support from Ministerio de Economia y Competitividad (MINECO) (Project MAT2016-78437-R, FEDER-EU). Finally, we acknowledge VRAC Grant Number L216-04 of Universidad Tecnológica Metropolitana.


  1. 1.
    L. Ionov, Biomimetic 3D self-assembling biomicroconstructs by spontaneous deformation of thin polymer films. J. Mater. Chem. 22, 19366–19375 (2012)CrossRefGoogle Scholar
  2. 2.
    J. Genzer, J. Groenewold, Soft matter with hard skin: From skin wrinkles to templating and material characterization. Soft Matter 2, 310–323 (2006)CrossRefGoogle Scholar
  3. 3.
    T. Ohzono, K. Suzuki, T. Yamaguchi, et al., Tunable optical diffuser based on deformable wrinkles. Adv. Opt. Mater. 1, 374–380 (2013)CrossRefGoogle Scholar
  4. 4.
    S.G. Lee, H. Kim, H.H. Choi, et al., Evaporation-induced self-alignment and transfer of semiconductor nanowires by wrinkled elastomeric templates. Adv. Mater. 25, 2162–2166 (2013)CrossRefGoogle Scholar
  5. 5.
    H. Stenberg, A. Matikainen, S. Daniel, et al., Self-organized polymer wrinkles: A lithography-free pathway for Surface-Enhanced Raman Scattering (SERS) substrates. Macromol. Mater. Eng. 300, 386–390 (2015)CrossRefGoogle Scholar
  6. 6.
    Y. Li, S. Dai, J. John, et al., Superhydrophobic surfaces from hierarchically structured wrinkled polymers. ACS Appl. Mater. Interfaces 5, 11066–11073 (2013)CrossRefGoogle Scholar
  7. 7.
    C.S. Davis, D. Martina, C. Creton, et al., Enhanced adhesion of elastic materials to small-scale wrinkles. Langmuir 28, 14899–14908 (2012)CrossRefGoogle Scholar
  8. 8.
    M.R. Aufan, Y. Sumi, S. Kim, et al., Facile synthesis of conductive polypyrrole wrinkle topographies on polydimethylsiloxane via a swelling-deswelling process and their potential uses in tissue engineering. ACS Appl. Mater. Interfaces 7, 23454–23463 (2015)CrossRefGoogle Scholar
  9. 9.
    A. Chen, D.K. Lieu, L. Freschauf, et al., Shrink-film configurable multiscale wrinkles for functional alignment of human embryonic stem cells and their cardiac derivatives. Adv. Mater. 23, 5785–5791 (2011)CrossRefGoogle Scholar
  10. 10.
    F. Greco, T. Fujie, L. Ricotti, et al., Microwrinkled conducting polymer interface for anisotropic multicellular alignment. ACS Appl. Mater. Interfaces 5, 573–584 (2013)CrossRefGoogle Scholar
  11. 11.
    J. Gu, X. Li, H. Ma, et al., One-step synthesis of PHEMA hydrogel films capable of generating highly ordered wrinkling patterns. Polymer (Guildf) 110, 114–123 (2017)CrossRefGoogle Scholar
  12. 12.
    M. Guvendiren, J.A. Burdick, The control of stem cell morphology and differentiation by hydrogel surface wrinkles. Biomaterials 31, 6511–6518 (2010)CrossRefGoogle Scholar
  13. 13.
    Z. Zhao, J. Gu, Y. Zhao, et al., Hydrogel thin film with swelling-induced wrinkling patterns for high-throughput generation of multicellular spheroids. Biomacromolecules 15, 3306–3312 (2014)CrossRefGoogle Scholar
  14. 14.
    F. Greco, A. Bellacicca, M. Gemmi, et al., Conducting shrinkable nanocomposite based on au-nanoparticle implanted plastic sheet: Tunable thermally induced surface wrinkling. ACS Appl. Mater. Interfaces 7, 7060–7065 (2015)CrossRefGoogle Scholar
  15. 15.
    J.H. Yang, Z.j. Zhao, B.S. Shin, et al., Metallization of microscale wrinkles on a curved surface by contact and electro-replication method. Int. J. Adv. Manuf. Technol. 92, 1165–1172 (2017)CrossRefGoogle Scholar
  16. 16.
    W.M. Huang, Z. Ding, C.C. Wang, et al., Shape memory materials. Mater. Today 13, 54–61 (2010)CrossRefGoogle Scholar
  17. 17.
    Y. Wang, J. Xiao, Programmable, reversible and repeatable wrinkling of shape memory polymer thin films on elastomeric substrates for smart adhesion. Soft Matter 13, 5317–5323 (2017)CrossRefGoogle Scholar
  18. 18.
    P.-L. Ko, F.-L. Chang, C.-H. Li, et al., Dynamically programmable surface micro-wrinkles on PDMS-SMA composite. Smart Mater. Struct 23(1–9), 115007 (2014)CrossRefGoogle Scholar
  19. 19.
    S. Schauer, R. Schmager, R. Hünig, et al., Disordered diffraction gratings tailored by shape-memory based wrinkling and their application to photovoltaics. Opt. Mater. Express 8, 184 (2018)CrossRefGoogle Scholar
  20. 20.
    D. Wei, M. Shrestha, A. Asundi, et al., Controlled micro-wrinkling of ultrathin indium-tin-oxide films for transparency tuning. Proc. SPIE – Int. Soc. Opt. Eng. 10449, 1–9 (2017)Google Scholar
  21. 21.
    C.M. Gabardo, J. Yang, N.J. Smith, et al., Programmable wrinkling of self-assembled nanoparticle films on shape memory polymers. ACS Nano 10, 8829–8836 (2016)CrossRefGoogle Scholar
  22. 22.
    W.K. Lee, C.J. Engel, M.D. Huntington, et al., Controlled three-dimensional hierarchical structuring by memory-based, sequential wrinkling. Nano Lett. 15, 5624–5629 (2015)CrossRefGoogle Scholar
  23. 23.
    Y. Alesanco, P. Miram, D. Sebastian, All-in-one gel-based electrochromic devices: Strengths and recent developments. Materials 11, 1–27 (2018)Google Scholar
  24. 24.
    S.K. Nemani, D. Chen, M.H. Mohamed, et al., Stretchable and hydrophobic electrochromic devices using wrinkled graphene and PEDOT:PSS. J. Nanomater. 2018, 1–10 (2018)Google Scholar
  25. 25.
    Q. Ji, C. Zhang, X. Qi, et al., Enhancing the efficiencies of organic photovoltaic and organic light-emitting diode devices by regular nano-wrinkle patterns. J. Shanghai Jiaotong Univ. 23, 45–51 (2018)CrossRefGoogle Scholar
  26. 26.
    C. Zong, Y. Zhao, H. Ji, et al., Tuning and erasing surface wrinkles by reversible visible-light-induced photoisomerization. Angew. Chemie – Int. Ed. 55, 3931–3935 (2016)CrossRefGoogle Scholar
  27. 27.
    S. Zeng, R. Li, S.G. Freire, et al., Moisture-responsive wrinkling surfaces with tunable dynamics. Adv. Mater. 29, 1700828 (2017)CrossRefGoogle Scholar
  28. 28.
    F. Li, H. Hou, J. Yin, et al., Multi-responsive wrinkling patterns by the photoswitchable supramolecular network. ACS Macro Lett. 6, 848–853 (2017)CrossRefGoogle Scholar
  29. 29.
    H. Hou, F. Li, Z. Su, et al., Light-reversible hierarchical patterns by dynamic photo-dimerization induced wrinkles. J. Mater. Chem. C 5, 8765–8773 (2017)CrossRefGoogle Scholar
  30. 30.
    H. Hou, J. Yin, X. Jiang, Reversible Diels–Alder reaction to control wrinkle patterns: From dynamic chemistry to dynamic patterns. Adv. Mater. 28, 9126–9132 (2016)CrossRefGoogle Scholar
  31. 31.
    J. Yoon, P. Bian, J. Kim, et al., Local switching of chemical patterns through light-triggered unfolding of creased hydrogel surfaces. Angew. Chemie – Int. Ed. 51, 7146–7149 (2012)CrossRefGoogle Scholar
  32. 32.
    T. Takeshima, W.Y. Liao, Y. Nagashima, et al., Photoresponsive surface wrinkle morphologies in liquid crystalline polymer films. Macromolecules 48, 6378–6384 (2015)CrossRefGoogle Scholar
  33. 33.
    H. Ji, Y. Zhao, C. Zong, et al., Simple and versatile strategy to prevent surface wrinkling by visible light irradiation. ACS Appl. Mater. Interfaces 8, 19127–19134 (2016)CrossRefGoogle Scholar
  34. 34.
    J. Wang, J. Xie, C. Zong, et al., Light-modulated surface micropatterns with multifunctional surface properties on photodegradable polymer films. ACS Appl. Mater. Interfaces 9, 37402–37410 (2017)CrossRefGoogle Scholar
  35. 35.
    T. Seki, D. Yamaoka, T. Takeshima, et al., Photo-modulations of surface wrinkles formed on elastomer sheets. Mol. Cryst. Liq. Cryst. 644, 52–60 (2017)CrossRefGoogle Scholar
  36. 36.
    D. Yamaoka, M. Hara, S. Nagano, et al., Photoalignable radical initiator for anisotropic polymerization in liquid crystalline media. Macromolecules 48, 908–914 (2015)CrossRefGoogle Scholar
  37. 37.
    G. Nasti, S. Sanchez, I. Gunkel, et al., Patterning of perovskite-polymer films by wrinkling instabilities. Soft Matter 13, 1654–1659 (2017)CrossRefGoogle Scholar
  38. 38.
    Y. Sun, J.H. Seo, C.J. Takacs, et al., Inverted polymer solar cells integrated with a low-temperature-annealed sol-gel-derived ZnO film as an electron transport layer. Adv. Mater. 23, 1679–1683 (2011)CrossRefGoogle Scholar
  39. 39.
    S.Y. Ryu, J.H. Seo, H. Hafeez, et al., Effects of the wrinkle structure and flat structure formed during static low-temperature annealing of ZnO on the performance of inverted polymer solar cells. J. Phys. Chem. C 121, 9191–9201 (2017)CrossRefGoogle Scholar
  40. 40.
    K.-W. Jun, J.-N. Kim, J.-Y. Jung, et al., Wrinkled graphene–AgNWs hybrid electrodes for smart window. Micromachines 8, 43 (2017)CrossRefGoogle Scholar
  41. 41.
    G. Lin, P. Chandrasekaran, C. Lv, et al., Self-similar hierarchical wrinkles as a potential multifunctional smart window with simultaneously tunable transparency, structural color, and droplet transport. ACS Appl. Mater. Interfaces 9, 26510–26517 (2017)CrossRefGoogle Scholar
  42. 42.
    D. Ge, E. Lee, L. Yang, et al., A robust smart window: Reversibly switching from high transparency to angle-independent structural color display. Adv. Mater. 27, 2489–2495 (2015)CrossRefGoogle Scholar
  43. 43.
    F. Li, H. Hou, J. Yin, et al., Near-infrared light – Responsive dynamic wrinkle patterns. Sci. Adv. 4(4), 1–9 (2018)Google Scholar
  44. 44.
    X. Cheng, L. Miao, Z. Su, et al., Controlled fabrication of nanoscale wrinkle structure by fluorocarbon plasma for highly transparent triboelectric nanogenerator. Microsyst. Nanoeng. 3, 16074 (2017)CrossRefGoogle Scholar
  45. 45.
    J. Duan, X. Liang, J. Guo, et al., Ultra-stretchable and force-sensitive hydrogels reinforced with chitosan microspheres embedded in polymer networks. Adv. Mater. 28, 8037–8044 (2016)CrossRefGoogle Scholar
  46. 46.
    G. Ge, Y. Zhang, J. Shao, et al., Stretchable, transparent, and self-patterned hydrogel-based pressure sensor for human motions detection. Adv. Funct. Mater. 28, 1–8 (2018)Google Scholar
  47. 47.
    N. Gao, X. Zhang, S. Liao, et al., Polymer swelling induced conductive wrinkles for an ultrasensitive pressure sensor. ACS Macro Lett. 5, 823–827 (2016)CrossRefGoogle Scholar
  48. 48.
    Y. Tokudome, H. Kuniwaki, K. Suzuki, et al., Thermoresponsive wrinkles on hydrogels for soft actuators. Adv. Mater. Interfaces 3, 1–5 (2016)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Departamento de Química, Facultad de Ciencias Naturales, Matemáticas y del Medio AmbienteUniversidad Tecnológica MetropolitanaSantiagoChile
  2. 2.Programa Institucional de Fomento a la Investigación, Desarrollo e InnovaciónUniversidad Tecnológica MetropolitanaSantiagoChile
  3. 3.Departamento de Ingeniería Estructural y GeotecniaPontificia Universidad Católica de Chile, Escuela de IngenieríaSantiagoChile
  4. 4.Instituto de Ingeniería Biológica y MédicaSantiagoChile
  5. 5.Departamento de Química Macromolecular AplicadaPolymer Functionalization Group. Instituto de Ciencia y Tecnología de Polímeros-Consejo Superior de Investigaciones Científicas (ICTP-CSIC)MadridSpain

Personalised recommendations