Advertisement

Tuning Surface Morphology of Polymer Films Through Bilayered Structures, Mechanical Forces, and External Stimuli

  • Ying LiEmail author
  • Shan Tang
Chapter

Abstract

Surface wrinkles and many other instability patterns are ubiquitous in nature, such as fruits, vegetables, skins, and biological tissues. Understanding these instability patterns is of paramount importance in physics and mechanics fields, in particular, for their engineering and biology applications. In this chapter, we give an overview of how to tune the surface morphology of polymer thin films through bilayered structures, mechanical forces, and external stimuli through combined theoretical, computational, and experimental studies. First, we demonstrate how the compressibility of the substrate can influence the buckling and post-buckling behaviors of a perfectly bonded hard thin film. We find that Poisson’s ratio of the substrate cannot only shift the critical strain for the onset of buckling but also affect the buckling modes. Second, we explore the surface instability of bilayered hydrogel subjected to both compression and solvent absorption. Our results show that when the thickness of the upper layer is very large, surface wrinkles can exist without transforming into period doublings. The pre-absorption of the water can result in folds or unexpected hierarchical wrinkles, which can be realized in experiments through further efforts. Third, we discuss the transition of surface–interface creasing in bilayered hydrogels. The surface or interface crease of the bilayered hydrogels under swelling is found to be governed by both the modulus ratio and height ratio between the thin film and substrate. Last, we study the surface instability of monolayer graphene supported by a soft (polymer) substrate under equal-biaxial compression. Regardless of the interfacial adhesion strength between the graphene and substrate, herringbone wrinkles have always been observed due to their lowest energy status, compared with the checkerboard, hexagonal, triangular, and one-dimensional sinusoidal modes. These fundamental understandings about the surface morphology of polymer thin films and their bilayered structures will enable their future applications in engineering and biology fields, such as flexible electronics, biofouling, and interfacial adhesion.

Keywords

Polymer film Surface instability Wrinkles Folds Creasing Finite element simulation 

References

  1. 1.
    M.A. Biot, Surface instability of rubber in compression. Appl. Sci. Res. Sect. A 12, 168–182 (1963)CrossRefGoogle Scholar
  2. 2.
    A. Gent, I. Cho, Surface instabilities in compressed or bent rubber blocks. Rubber Chem. Technol. 72, 253–262 (1999)CrossRefGoogle Scholar
  3. 3.
    A. Ghatak, A.L. Das, Kink instability of a highly deformable elastic cylinder. Phys. Rev. Lett. 99, 076101 (2007)CrossRefGoogle Scholar
  4. 4.
    W. Hong, X. Zhao, Z. Suo, Formation of creases on the surfaces of elastomers and gels. Appl. Phys. Lett. 95, 111901 (2009)CrossRefGoogle Scholar
  5. 5.
    E. Hohlfeld, L. Mahadevan, Unfolding the sulcus. Phys. Rev. Lett. 106, 105702 (2011)CrossRefGoogle Scholar
  6. 6.
    Y. Cao, J.W. Hutchinson, From wrinkles to creases in elastomers: the instability and imperfection-sensitivity of wrinkling, in Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, The Royal Society: 2011; p rspa20110384Google Scholar
  7. 7.
    B. Li, Y.-P. Cao, X.-Q. Feng, H. Gao, Mechanics of morphological instabilities and surface wrinkling in soft materials: A review. Soft Matter 8, 5728–5745 (2012)CrossRefGoogle Scholar
  8. 8.
    H. Mei, R. Huang, J.Y. Chung, C.M. Stafford, H.-H. Yu, Buckling modes of elastic thin films on elastic substrates. Appl. Phys. Lett. 90, 151902 (2007)CrossRefGoogle Scholar
  9. 9.
    J.-Y. Sun, S. Xia, M.-W. Mon, K. H. Oh, K.-S. Kim, Folding wrinkles of a thin stiff layer on a soft substrate, in Proceedings of Royal Society A 2011, rspa20110567Google Scholar
  10. 10.
    J. Kim, J. Yoon, R.C. Hayward, Dynamic display of biomolecular patterns through an elastic creasing instability of stimuli-responsive hydrogels. Nat. Mater. 9, 159 (2010)CrossRefGoogle Scholar
  11. 11.
    P. Shivapooja, Q. Wang, B. Orihuela, D. Rittschof, G.P. López, X. Zhao, Bioinspired surfaces with dynamic topography for active control of biofouling. Adv. Mater. 25, 1430–1434 (2013)CrossRefGoogle Scholar
  12. 12.
    E.P. Chan, J.M. Karp, R.S. Langer, A “self-pinning” adhesive based on responsive surface wrinkles. J. Polym. Sci. B Polym. Phys. 49, 40–44 (2011)CrossRefGoogle Scholar
  13. 13.
    K. Saha, J. Kim, E. Irwin, J. Yoon, F. Momin, V. Trujillo, D.V. Schaffer, K.E. Healy, R.C. Hayward, Surface creasing instability of soft polyacrylamide cell culture substrates. Biophys. J. 99, L94–L96 (2010)CrossRefGoogle Scholar
  14. 14.
    S. Krylov, B.R. Ilic, D. Schreiber, S. Seretensky, H. Craighead, The pull-in behavior of electrostatically actuated bistable microstructures. J. Micromech. Microeng. 18, 055026 (2008)CrossRefGoogle Scholar
  15. 15.
    Y. Li, X.-S. Wang, X.-K. Meng, Buckling behavior of metal film/substrate structure under pure bending. Appl. Phys. Lett. 92, 131902 (2008)CrossRefGoogle Scholar
  16. 16.
    Y. Li, X.-S. Wang, Q. Fan, Effects of elastic anisotropy on the surface stability of thin film/substrate system. Int. J. Eng. Sci. 46, 1325–1333 (2008)CrossRefGoogle Scholar
  17. 17.
    V.V. Bolotin, Delaminations in composite structures: Its origin, buckling, growth and stability. Compos. Part B Eng. 27, 129–145 (1996)CrossRefGoogle Scholar
  18. 18.
    Y. Hu, A. Hiltner, E. Baer, Buckling in elastomer/plastic/elastomer 3-layer films. Polym. Compos. 25, 653–661 (2004)CrossRefGoogle Scholar
  19. 19.
    Q. Wang, X. Zhao, A three-dimensional phase diagram of growth-induced surface instabilities. Sci. Rep. 5, 8887 (2015)CrossRefGoogle Scholar
  20. 20.
    Y. Cao, J.W. Hutchinson, Wrinkling phenomena in neo-Hookean film/substrate bilayers. J. Appl. Mech. 79, 031019 (2012)CrossRefGoogle Scholar
  21. 21.
    Q. Wang, X. Zhao, Phase diagrams of instabilities in compressed film-substrate systems. J. Appl. Mech. 81, 051004 (2014)CrossRefGoogle Scholar
  22. 22.
    L. Jin, Z. Suo, Smoothening creases on surfaces of strain-stiffening materials. J. Mech. Phys. Solids 74, 68–79 (2015)CrossRefGoogle Scholar
  23. 23.
    J. Yin, Z. Cao, C. Li, I. Sheinman, X. Chen, Stress-driven buckling patterns in spheroidal core/shell structures. Proc Natl Acad Sci 105, 19132–19135 (2008)CrossRefGoogle Scholar
  24. 24.
    J. Yin, X. Chen, I. Sheinman, Anisotropic buckling patterns in spheroidal film/substrate systems and their implications in some natural and biological systems. J. Mech. Phys. Solids 57, 1470–1484 (2009)CrossRefGoogle Scholar
  25. 25.
    B. Li, F. Jia, Y.-P. Cao, X.-Q. Feng, H. Gao, Surface wrinkling patterns on a core-shell soft sphere. Phys. Rev. Lett. 106, 234301 (2011)CrossRefGoogle Scholar
  26. 26.
    P. Ciarletta, V. Balbi, E. Kuhl, Pattern selection in growing tubular tissues. Phys. Rev. Lett. 113, 248101 (2014)CrossRefGoogle Scholar
  27. 27.
    D. Ambrosi, G. Ateshian, E. Arruda, S. Cowin, J. Dumais, A. Goriely, G.A. Holzapfel, J.D. Humphrey, R. Kemkemer, E. Kuhl, Perspectives on biological growth and remodeling. J. Mech. Phys. Solids 59, 863–883 (2011)CrossRefGoogle Scholar
  28. 28.
    S. Tang, Y. Li, Y. Yang, Z. Guo, The effect of mechanical-driven volumetric change on instability patterns of bilayered soft solids. Soft Matter 11, 7911–7919 (2015)CrossRefGoogle Scholar
  29. 29.
    Z. Zhou, Y. Li, T. Guo, X. Guo, S. Tang, Surface instability of bilayer hydrogel subjected to both compression and solvent absorption. Polymers 10, 624 (2018)CrossRefGoogle Scholar
  30. 30.
    Z. Zhou, Y. Li, W. Wong, T. Guo, S. Tang, J. Luo, Transition of surface–interface creasing in bilayer hydrogels. Soft Matter 13, 6011–6020 (2017)CrossRefGoogle Scholar
  31. 31.
    Y. Li, Reversible wrinkles of monolayer graphene on a polymer substrate: Toward stretchable and flexible electronics. Soft Matter 12, 3202–3213 (2016)CrossRefGoogle Scholar
  32. 32.
    X. Chen, J. Yin, Buckling patterns of thin films on curved compliant substrates with applications to morphogenesis and three-dimensional micro-fabrication. Soft Matter 6, 5667–5680 (2010)CrossRefGoogle Scholar
  33. 33.
    M. Diab, T. Zhang, R. Zhao, H. Gao, K.-S. Kim, Ruga mechanics of creasing: From instantaneous to setback creases. Proc. R. Soc. A 469, 20120753 (2013)CrossRefGoogle Scholar
  34. 34.
    Q. Wang, X. Zhao, Beyond wrinkles: Multimodal surface instabilities for multifunctional patterning. MRS Bull. 41, 115–122 (2016)CrossRefGoogle Scholar
  35. 35.
    S. Deng, V. Berry, Wrinkled, rippled and crumpled graphene: An overview of formation mechanism, electronic properties, and applications. Mater. Today 19, 197–212 (2016)CrossRefGoogle Scholar
  36. 36.
    G.N. Greaves, A. Greer, R. Lakes, T. Rouxel, Poisson’s ratio and modern materials. Nat. Mater. 10, 823 (2011)CrossRefGoogle Scholar
  37. 37.
    S. Tang, Y. Li, W.K. Liu, X.X. Huang, Surface ripples of polymeric nanofibers under tension: The crucial role of Poisson’s ratio. Macromolecules 47, 6503–6514 (2014)CrossRefGoogle Scholar
  38. 38.
    G.W. Milton, Composite materials with Poisson’s ratios close to—1. J. Mech. Phys. Solids 40, 1105–1137 (1992)CrossRefGoogle Scholar
  39. 39.
    J.N. Grima, A. Alderson, K. Evans, Auxetic behaviour from rotating rigid units. Phys. Status Solidi B 242, 561–575 (2005)CrossRefGoogle Scholar
  40. 40.
    S. Babaee, J. Shim, J.C. Weaver, E.R. Chen, N. Patel, K. Bertoldi, 3D soft metamaterials with negative Poisson’s ratio. Adv. Mater. 25, 5044–5049 (2013)CrossRefGoogle Scholar
  41. 41.
    S. Hirotsu, Softening of bulk modulus and negative Poisson’s ratio near the volume phase transition of polymer gels. J. Chem. Phys. 94, 3949–3957 (1991)CrossRefGoogle Scholar
  42. 42.
    E.M. Arruda, M.C. Boyce, A three-dimensional constitutive model for the large stretch behavior of rubber elastic materials. J. Mech. Phys. Solids 41, 389–412 (1993)CrossRefGoogle Scholar
  43. 43.
    W. Wong, T. Guo, Y. Zhang, L. Cheng, Surface instability maps for soft materials. Soft Matter 6, 5743–5750 (2010)CrossRefGoogle Scholar
  44. 44.
    S. Tang, Y. Yang, X.H. Peng, W.K. Liu, X.X. Huang, K. Elkhodary, A semi-numerical algorithm for instability of compressible multilayered structures. Comput. Mech. 56, 63–75 (2015)CrossRefGoogle Scholar
  45. 45.
    F. Brau, H. Vandeparre, A. Sabbah, C. Poulard, A. Boudaoud, P. Damman, Multiple-length-scale elastic instability mimics parametric resonance of nonlinear oscillators. Nat. Phys. 7, 56 (2011)CrossRefGoogle Scholar
  46. 46.
    A. Auguste, L. Jin, Z. Suo, R.C. Hayward, The role of substrate pre-stretch in post-wrinkling bifurcations. Soft Matter 10, 6520–6529 (2014)CrossRefGoogle Scholar
  47. 47.
    Z.-C. Shao, Y. Zhao, W. Zhang, Y. Cao, X.-Q. Feng, Curvature induced hierarchical wrinkling patterns in soft bilayers. Soft Matter 12, 7977–7982 (2016)CrossRefGoogle Scholar
  48. 48.
    W.-K. Lee, C.J. Engel, M.D. Huntington, J. Hu, T.W. Odom, Controlled three-dimensional hierarchical structuring by memory-based, sequential wrinkling. Nano Lett. 15, 5624–5629 (2015)CrossRefGoogle Scholar
  49. 49.
    Y. Wang, Q. Sun, J. Xiao, Simultaneous formation of multiscale hierarchical surface morphologies through sequential wrinkling and folding. Appl. Phys. Lett. 112, 081602 (2018)CrossRefGoogle Scholar
  50. 50.
    L. Jin, D. Chen, R.C. Hayward, Z. Suo, Creases on the interface between two soft materials. Soft Matter 10, 303–311 (2014)CrossRefGoogle Scholar
  51. 51.
    B.B. Xu, Q. Liu, Z. Suo, R.C. Hayward, Reversible electrochemically triggered delamination blistering of hydrogel films on micropatterned electrodes. Adv. Funct. Mater. 26, 3218–3225 (2016)CrossRefGoogle Scholar
  52. 52.
    B. Xu, R.C. Hayward, Low-voltage switching of crease patterns on hydrogel surfaces. Adv. Mater. 25, 5555–5559 (2013)CrossRefGoogle Scholar
  53. 53.
    S. Cai, D. Chen, Z. Suo, R.C. Hayward, Creasing instability of elastomer films. Soft Matter 8, 1301–1304 (2012)CrossRefGoogle Scholar
  54. 54.
    J. Zang, S. Ryu, N. Pugno, Q. Wang, Q. Tu, M.J. Buehler, X. Zhao, Multifunctionality and control of the crumpling and unfolding of large-area graphene. Nat. Mater. 12, 321 (2013)CrossRefGoogle Scholar
  55. 55.
    T. Al-Mulla, Z. Qin, M.J. Buehler, Crumpling deformation regimes of monolayer graphene on substrate: A molecular mechanics study. J. Phys. Condens. Matter 27, 345401 (2015)CrossRefGoogle Scholar
  56. 56.
    K. Zhang, M. Arroyo, Adhesion and friction control localized folding in supported graphene. J. Appl. Phys. 113, 193501 (2013)CrossRefGoogle Scholar
  57. 57.
    K. Zhang, M. Arroyo, Understanding and strain-engineering wrinkle networks in supported graphene through simulations. J. Mech. Phys. Solids 72, 61–74 (2014)CrossRefGoogle Scholar
  58. 58.
    X. Chen, J.W. Hutchinson, Herringbone buckling patterns of compressed thin films on compliant substrates. J. Appl. Mech. 71, 597–603 (2004)CrossRefGoogle Scholar
  59. 59.
    S. Cai, D. Breid, A.J. Crosby, Z. Suo, J.W. Hutchinson, Periodic patterns and energy states of buckled films on compliant substrates. J. Mech. Phys. Solids 59, 1094–1114 (2011)CrossRefGoogle Scholar
  60. 60.
    J. Song, H. Jiang, W. Choi, D. Khang, Y. Huang, J. Rogers, An analytical study of two-dimensional buckling of thin films on compliant substrates. J. Appl. Phys. 103, 014303 (2008)CrossRefGoogle Scholar
  61. 61.
    W.M. Choi, J. Song, D.-Y. Khang, H. Jiang, Y.Y. Huang, J.A. Rogers, Biaxially stretchable “wavy” silicon nanomembranes. Nano Lett. 7, 1655–1663 (2007)CrossRefGoogle Scholar
  62. 62.
    S.-K. Lee, B.J. Kim, H. Jang, S.C. Yoon, C. Lee, B.H. Hong, J.A. Rogers, J.H. Cho, J.-H. Ahn, Stretchable graphene transistors with printed dielectrics and gate electrodes. Nano Lett. 11, 4642–4646 (2011)CrossRefGoogle Scholar
  63. 63.
    Y. Wang, L. Wang, T. Yang, X. Li, X. Zang, M. Zhu, K. Wang, D. Wu, H. Zhu, Wearable and highly sensitive graphene strain sensors for human motion monitoring. Adv. Funct. Mater. 24, 4666–4670 (2014)CrossRefGoogle Scholar
  64. 64.
    J. Bai, Y. Huang, Fabrication and electrical properties of graphene nanoribbons. Mater. Sci. Eng. R Rep. 70, 341–353 (2010)CrossRefGoogle Scholar
  65. 65.
    S. Kabiri Ameri, R. Ho, H. Jang, L. Tao, Y. Wang, L. Wang, D.M. Schnyer, D. Akinwande, N. Lu, Graphene electronic tattoo sensors. ACS Nano 11, 7634–7641 (2017)CrossRefGoogle Scholar
  66. 66.
    D. Song, A. Mahajan, E.B. Secor, M.C. Hersam, L.F. Francis, C.D. Frisbie, High-resolution transfer printing of graphene lines for fully printed, flexible electronics. ACS Nano 11, 7431–7439 (2017)CrossRefGoogle Scholar
  67. 67.
    K. Efimenko, M. Rackaitis, E. Manias, A. Vaziri, L. Mahadevan, J. Genzer, Nested self-similar wrinkling patterns in skins. Nat. Mater. 4, 293 (2005)CrossRefGoogle Scholar
  68. 68.
    W.-K. Lee, W.-B. Jung, S.R. Nagel, T.W. Odom, Stretchable superhydrophobicity from monolithic, three-dimensional hierarchical wrinkles. Nano Lett. 16, 3774–3779 (2016)CrossRefGoogle Scholar
  69. 69.
    G. Lin, P. Chandrasekaran, C. Lv, Q. Zhang, Y. Tang, L. Han, J. Yin, Self-similar hierarchical wrinkles as a potential multifunctional smart window with simultaneously tunable transparency, structural color, and droplet transport. ACS Appl. Mater. Interfaces 9, 26510–26517 (2017)CrossRefGoogle Scholar
  70. 70.
    J. Yin, C. Lu, Hierarchical surface wrinkles directed by wrinkled templates. Soft Matter 8, 6528–6534 (2012)CrossRefGoogle Scholar
  71. 71.
    S. Budday, E. Kuhl, J.W. Hutchinson, Period-doubling and period-tripling in growing bilayered systems. Philos. Mag. 95, 3208–3224 (2015)CrossRefGoogle Scholar
  72. 72.
    R. Zhao, T. Zhang, M. Diab, H. Gao, K.-S. Kim, The primary bilayer ruga-phase diagram I: Localizations in ruga evolution. Extreme Mech. Lett. 4, 76–82 (2015)CrossRefGoogle Scholar
  73. 73.
    A. Haji Hosseinloo, K. Turitsyn, Energy harvesting via wrinkling instabilities. Appl. Phys. Lett. 110, 013901 (2017)CrossRefGoogle Scholar
  74. 74.
    T. Tallinen, J.Y. Chung, J.S. Biggins, L. Mahadevan, Gyrification from constrained cortical expansion. Proc. Natl. Acad. Sci. 111, 12667–12672 (2014)CrossRefGoogle Scholar
  75. 75.
    Q.-D. To, Stress concentration and surface instability of anisotropic solids with slightly wavy boundary. Int. J. Solids Struct. 49, 151–160 (2012)CrossRefGoogle Scholar
  76. 76.
    A.E. Shyer, T. Tallinen, N.L. Nerurkar, Z. Wei, E.S. Gil, D.L. Kaplan, C.J. Tabin, L. Mahadevan, Villification: How the gut gets its villi. Science 342, 212–218 (2013)CrossRefGoogle Scholar
  77. 77.
    M.B. Amar, F. Jia, Anisotropic growth shapes intestinal tissues during embryogenesis. Proc. Natl. Acad. Sci. 110, 10525–10530 (2013)CrossRefGoogle Scholar
  78. 78.
    G.M. Grason, B. Davidovitch, Universal collapse of stress and wrinkle-to-scar transition in spherically confined crystalline sheets. Proc. Natl. Acad. Sci. 110, 12893–12898 (2013)CrossRefGoogle Scholar
  79. 79.
    H. Qiu, Y. Li, T.F. Guo, X. Guo, S. Tang, Deformation and pattern transformation of porous soft solids under biaxial loading: Experiments and simulations. Extreme Mech. Lett. 20, 81–90 (2018)CrossRefGoogle Scholar
  80. 80.
    Z. Li, Z. Zhou, Y. Li, S. Tang, Effect of cyclic loading on surface instability of silicone rubber under compression. Polymers 9, 148 (2017)CrossRefGoogle Scholar
  81. 81.
    S. Tang, Y. Li, W.K. Liu, N. Hu, X.H. Peng, Z. Guo, Tensile stress-driven surface wrinkles on cylindrical core–shell soft solids. J. Appl. Mech. 82, 121002 (2015)CrossRefGoogle Scholar
  82. 82.
    D. Peng, Z. Zhou, Y. Liu, T. Guo, Y. Li, S. Tang, Computational modeling of the effect of sulci during tumor growth and cerebral edema. J. Nanomater. 2016, 3038790 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Mechanical Engineering and Institute of Materials ScienceUniversity of ConnecticutStorrsUSA
  2. 2.Department of Engineering MechanicsDalian University of TechnologyDalianChina

Personalised recommendations