Wrinkled Surfaces Designed for Biorelated Applications

  • C. M. González-HenríquezEmail author
  • M. A. Sarabia Vallejos
  • Juan Rodríguez-HernándezEmail author


Wrinkling and buckling of multilayered materials are common methodologies used for generating micro- or nano-patterned topographies on the top of the devices. According to the material used and the size and distribution of those patterns, some of these devices can be used for several interesting purposes like aeronautics, force/pressure sensing, or particle selective transport. Biorelated purposes is also a field of application which has attracted high interest in the last years. To take advantage of micro-pattern characteristics is a clever way to impart some interesting capabilities to the material. Interestingly, these modifications could generate or improve some useful properties like biocompatibility or antibiofouling capacities. In this chapter, some of the most relevant examples of biorelated applications of wrinkled patterns are fully reviewed. As a summary, different topics are mentioned in this section, like scaffolds with cell proliferation improvement, devices which allow cellular alignment or differentiation, surfaces which help in the generation of multicellular-spheroid structures, or antibiofouling surfaces.


Cell proliferation Cellular alignment or differentiation Biocompatible devices Antibiofouling Wrinkled polymer surfaces 



The authors acknowledge financial support given by FONDECYT Grant N° 1170209. M.A. Sarabia acknowledges the financial support given by CONICYT through the doctoral program Scholarship Grant. J. Rodriguez-Hernandez acknowledges financial support from Ministerio de Economia y Competitividad (MINECO) (Project MAT2016-78437-R, FEDER-EU) and, finally, VRAC Grant Number L216-04 of Universidad Tecnológica Metropolitana.


  1. 1.
    M.R. Aufan, Y. Sumi, S. Kim, et al., Facile synthesis of conductive polypyrrole wrinkle topographies on polydimethylsiloxane via a swelling-deswelling process and their potential uses in tissue engineering. ACS Appl. Mater. Interfaces 7, 23454–23463 (2015)CrossRefGoogle Scholar
  2. 2.
    A. Chen, D.K. Lieu, L. Freschauf, et al., Shrink-film configurable multiscale wrinkles for functional alignment of human embryonic stem cells and their cardiac derivatives. Adv. Mater. 23, 5785–5791 (2011)CrossRefGoogle Scholar
  3. 3.
    F. Greco, T. Fujie, L. Ricotti, et al., Microwrinkled conducting polymer Interface for anisotropic multicellular alignment. ACS Appl. Mater. Interfaces 5, 573–584 (2013)CrossRefGoogle Scholar
  4. 4.
    M. Guvendiren, J.A. Burdick, The control of stem cell morphology and differentiation by hydrogel surface wrinkles. Biomaterials 31, 6511–6518 (2010)CrossRefGoogle Scholar
  5. 5.
    J. Gu, X. Li, H. Ma, et al., One-step synthesis of PHEMA hydrogel films capable of generating highly ordered wrinkling patterns. Polymer (Guildf). 110, 114–123 (2017)CrossRefGoogle Scholar
  6. 6.
    Z. Zhao, J. Gu, Y. Zhao, et al., Hydrogel thin film with swelling-induced wrinkling patterns for high-throughput generation of multicellular spheroids. Biomacromolecules 15, 3306–3312 (2014)CrossRefGoogle Scholar
  7. 7.
    M. Nikkhah, F. Edalat, S. Manoucheri, et al., Engineering microscale topographies to control the cell-substrate Interface. Biomaterials 33, 5230–5246 (2012)CrossRefGoogle Scholar
  8. 8.
    D. Hoffman-kim, J.A. Mitchel, R.V. Bellamkonda, NIH Public Access. Annu. Rev. Biomed. Eng 12, 203–231 (2010)CrossRefGoogle Scholar
  9. 9.
    H.J. Jeon, C.G. Simon, G.H. Kim, A mini-review: Cell response to microscale, nanoscale, and hierarchical patterning of surface structure. J. Biomed. Mater. Res. B Appl. Biomater. 102, 1580–1594 (2014)CrossRefGoogle Scholar
  10. 10.
    H. Izawa, N. Okuda, T. Yonemura, et al., Application of bio-based wrinkled surfaces as cell culture scaffolds. Colloid. Interface. 2, 15 (2018)CrossRefGoogle Scholar
  11. 11.
    L. Peng, S. Zhou, B. Yang, et al., Chemically modified surface having a dual-structured hierarchical topography for controlled cell growth. ACS Appl. Mater. Interfaces 9, 24339–24347 (2017)CrossRefGoogle Scholar
  12. 12.
    M. Li, D. Joung, B. Hughes, et al., Wrinkling non-spherical particles and its application in cell attachment promotion. Sci. Rep. 6, 30463 (2016)CrossRefGoogle Scholar
  13. 13.
    Q. Zhou, O. Castañeda Ocampo, C.F. Guimarães, et al., Screening platform for cell contact guidance based on inorganic biomaterial micro/nanotopographical gradients. ACS Appl. Mater. Interfaces 9, 31433–31445 (2017)CrossRefGoogle Scholar
  14. 14.
    X. Cui, Y. Hartanto, H. Zhang, Advances in multicellular spheroids formation. J. R. Soc. Interface 14, 20160877 (2017)CrossRefGoogle Scholar
  15. 15.
    A. Ivascu, M. Kubbies, Rapid generation of single-tumor spheroids for high-throughput cell function and toxicity analysis. J. Biomol. Screen. 11, 922–932 (2006)CrossRefGoogle Scholar
  16. 16.
    X. Cui, S. Dini, S. Dai, et al., A mechanistic study on tumour spheroid formation in thermosensitive hydrogels: Experiments and mathematical modelling. RSC Adv. 6, 73282–73291 (2016)CrossRefGoogle Scholar
  17. 17.
    M.B. Oliveira, A.I. Neto, C.R. Correia, et al., Superhydrophobic chips for cell spheroids high-throughput generation and drug screening. ACS Appl. Mater. Interfaces 6, 9488–9495 (2014)CrossRefGoogle Scholar
  18. 18.
    M. Ingram, G.B. Techy, R. Saroufeem, et al., Three-dimensional growth patterns of various human tumor cell lines in simulated microgravity of a NASA bioreactor. In Vitro Cell. Dev. Biol. Anim. 33, 459–466 (1997)CrossRefGoogle Scholar
  19. 19.
    K. Chen, M. Wu, F. Guo, et al., Rapid formation of size-controllable multicellular spheroids: Via 3D acoustic tweezers. Lab Chip 16, 2636–2643 (2016)CrossRefGoogle Scholar
  20. 20.
    Y. Zhang, H. Hu, X. Pei, et al., Polymer brushes on structural surfaces: A novel synergistic strategy for perfectly resisting algae settlement. Biomater. Sci. 5, 2493–2500 (2017)CrossRefGoogle Scholar
  21. 21.
    J.Z. Wang, Y.X. Zhu, H.C. Ma, et al., Developing Multi-Cellular Tumor Spheroid Model (MCTS) in the Chitosan/Collagen/Alginate (CCA) fibrous scaffold for anticancer drug screening. Mater. Sci. Eng. C 62, 215–225 (2016)CrossRefGoogle Scholar
  22. 22.
    V.H.B. Ho, N.K.H. Slater, R. Chen, PH-responsive Endosomolytic pseudo-peptides for drug delivery to multicellular spheroids tumour models. Biomaterials 32, 2953–2958 (2011)CrossRefGoogle Scholar
  23. 23.
    L. Xia, R.B. Sakban, Y. Qu, et al., Tethered spheroids as an in vitro hepatocyte model for drug safety screening. Biomaterials 33, 2165–2176 (2012)CrossRefGoogle Scholar
  24. 24.
    J. Zhang, S. Zhao, Y. Zhu, et al., Three-dimensional printing of strontium-containing mesoporous bioactive glass scaffolds for bone regeneration. Acta Biomater. 10, 2269–2281 (2014)CrossRefGoogle Scholar
  25. 25.
    C.S. Ware, T. Smith-Palmer, S. Peppou-Chapman, et al., Marine antifouling behavior of lubricant-infused nanowrinkled polymeric surfaces. ACS Appl. Mater. Interfaces 10, 4173–4182 (2018)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Departamento de Química, Facultad de Ciencias Naturales, Matemáticas y del Medio AmbienteUniversidad Tecnológica MetropolitanaSantiagoChile
  2. 2.Programa Institucional de Fomento a la Investigación, Desarrollo e InnovaciónUniversidad Tecnológica MetropolitanaSantiagoChile
  3. 3.Departamento de Ingeniería Estructural y GeotecniaPontificia Universidad Católica de Chile, Escuela de IngenieríaSantiagoChile
  4. 4.Instituto de Ingeniería Biológica y MédicaSantiagoChile
  5. 5.Departamento de Química Macromolecular AplicadaPolymer Functionalization Group, Instituto de Ciencia y Tecnología de Polímeros-Consejo Superior de Investigaciones Científicas (ICTP-CSIC)MadridSpain

Personalised recommendations