Advertisement

Ripples and Wrinkles in Graphene: Beyond Continuum Mechanics

  • Hervé ElettroEmail author
  • Francisco MeloEmail author
Chapter

Abstract

Graphene and other low-dimensional materials are a fantastic playground both for fundamental and applied sciences: for the former, to reach beyond the laws of continuum mechanics and expand the realm of bulk materials and, for the latter, to unlock new potential breakthroughs in areas ranging from single-molecule sensors to hydrogen storage and water filtration.

In this review, we explore the physical origins of the unique mechanical properties of mono- and few-layer graphene. For instance, bending resistance builds up in monolayer graphene through pi-orbital misalignment but does not involve any elastic strain, in stark contrast with its bulk counterpart. In addition, thermal fluctuations and physical defects renormalize the effective mechanical behavior of graphene. We then review the various wrinkling processes observed in graphene systems, thermally activated self-tearing, thermal expansion or lattice mismatch, and adsorbate-induced spontaneous curvature, and discuss their relevance in technological applications.

The uniqueness of graphene properties presented here showcases the broad range of disciplines impacted by the (just nucleated) birth of 2D systems.

Keywords

Graphene 2D materials Solid mechanics Thermal fluctuations Wrinkles Ripples NEMS Nanomechanics Continuum mechanics Nanoengineering 

Notes

Acknowledgment

We acknowledge the financial support from FONDECYT/CONICYT-Chile through the postdoctoral project N° 3160152 and from H2020 through the Marie Skłodowska-Curie Individual Fellowship N° 750802. F.M. is grateful to FONDECYT/Anillo Act-1410. We thank P. Reis, A. Kŏsmrlj, J-C. Géminard, J. Bico, B. Roman, E. Katifori, and L. Gordillo for enlightening discussions.

References

  1. 1.
    A.K. Geim, K.S. Novoselov, Nat. Mater. 6, 183–191 (2007)CrossRefGoogle Scholar
  2. 2.
    R. Peierls, Ann. IH Poincare 5, 177–222 (1935)Google Scholar
  3. 3.
    L.D. Landau, E.M. Lifshitz, L. Pitaevskii, Statistical Physics, Part I (Pergamon Press, Oxford/New York, 1980)Google Scholar
  4. 4.
    K. Novoselov, A.K. Geim, S. Morozov, D. Jiang, M. Katsnelson, I. Grigorieva, S. Dubonos, A. Firsov, Nature 438, 197–200 (2005)CrossRefGoogle Scholar
  5. 5.
    E. Secchi, S. Marbach, A. Niguès, D. Stein, A. Siria, L. Bocquet, Nature 537, 210–213 (2016)CrossRefGoogle Scholar
  6. 6.
    L. Lindsay, D. Broido, N. Mingo, Phys. Rev. B 82, 115427 (2010)CrossRefGoogle Scholar
  7. 7.
    P. Zhang, L. Ma, F. Fan, Z. Zeng, C. Peng, P.E. Loya, Z. Liu, Y. Gong, J. Zhang, X. Zhang, et al., Nat. Commun. 5, 3782 (2014)CrossRefGoogle Scholar
  8. 8.
    T.R. Nayak, H. Andersen, V.S. Makam, C. Khaw, S. Bae, X. Xu, P.-L.R. Ee, J.-H. Ahn, B.H. Hong, G. Pastorin, et al., ACS Nano 5, 4670–4678 (2011)CrossRefGoogle Scholar
  9. 9.
    Y.-M. Lin, C. Dimitrakopoulos, K.A. Jenkins, D.B. Farmer, H.-Y. Chiu, A. Grill, P. Avouris, Science 327, 662–662 (2010)CrossRefGoogle Scholar
  10. 10.
    T.-H. Han, H. Kim, S.-J. Kwon, T.-W. Lee, Mater. Sci. Eng. R. Rep 118, 1–43 (2017)CrossRefGoogle Scholar
  11. 11.
    R.R. Nair, H.A. Wu, P.N. Jayaram, I.V. Grigorieva, A.K. Geim, Science 335, 442–444 (2012)CrossRefGoogle Scholar
  12. 12.
    The Graphene Flagship General Assembly 2018. (2018). https://graphene-flagship.eu/the-graphene-flagship-general-assembly-2018
  13. 13.
    J.C. Meyer, A.K. Geim, M.I. Katsnelson, K.S. Novoselov, T.J. Booth, S. Roth, Nature 446, 60–63 (2007)CrossRefGoogle Scholar
  14. 14.
    A.C. Ferrari, F. Bonaccorso, V. Fal’Ko, K.S. Novoselov, S. Roche, P. Bøggild, S. Borini, F.H. Koppens, V. Palermo, N. Pugno, et al., Nanoscale 7, 4598–4810 (2015)CrossRefGoogle Scholar
  15. 15.
    F. Brau, P. Damman, H. Diamant, T.A. Witten, Soft Matter 9, 8177–8186 (2013)CrossRefGoogle Scholar
  16. 16.
    J.E. Gordon, Structures: Or why Things don’t Fall Down (Da Capo Press, Cambrige, MA, 2003)Google Scholar
  17. 17.
    F. Scarpa, S. Adhikari, A.S. Phani, Nanotechnology 20, 065709 (2009)CrossRefGoogle Scholar
  18. 18.
    C. Lee, X. Wei, J.W. Kysar, J. Hone, Science 321, 385–388 (2008)CrossRefGoogle Scholar
  19. 19.
    G. López-Polín, C. Gómez-Navarro, V. Parente, F. Guinea, M.I. Katsnelson, F. Pérez-Murano, J. Gómez-Herrero, Nat. Phys. 11, 26–31 (2015)CrossRefGoogle Scholar
  20. 20.
    Q. Lu, M. Arroyo, R. Huang, J. Phys. D. Appl. Phys. 42, 102002 (2009)CrossRefGoogle Scholar
  21. 21.
    D.-B. Zhang, E. Akatyeva, T. Dumitrică, Phys. Rev. Lett. 106, 255503 (2011)CrossRefGoogle Scholar
  22. 22.
    A.E.H. Love, Philos. Trans. R. Soc. Lond. A 179, 491–546 (1888)CrossRefGoogle Scholar
  23. 23.
    A. Carlson, T. Dumitrică, Nanotechnology 18, 065706 (2007)CrossRefGoogle Scholar
  24. 24.
    B. Audoly, Y. Pomeau, Elasticity and Geometry: From Hair Curls to the Nonlinear Response of Shells (Oxford University Press, Oxford/New York, 2010)Google Scholar
  25. 25.
    Y. Wei, B. Wang, J. Wu, R. Yang, M.L. Dunn, Nano Lett. 13, 26–30 (2013)CrossRefGoogle Scholar
  26. 26.
    I. Nikiforov, E. Dontsova, R.D. James, T. Dumitrică, Phys. Rev. B 89, 155437 (2014)CrossRefGoogle Scholar
  27. 27.
    J.H. Los, A. Fasolino, M.I. Katsnelson, npj 2D Mater. Appl. 1, 9 (2017)CrossRefGoogle Scholar
  28. 28.
    J. Los, A. Fasolino, M. Katsnelson, Phys. Rev. Lett. 116, 015901 (2016)CrossRefGoogle Scholar
  29. 29.
    O. Blakslee, D. Proctor, E. Seldin, G. Spence, T. Weng, J. Appl. Phys. 41, 3373–3382 (1970)CrossRefGoogle Scholar
  30. 30.
    L. Tapasztó, T. Dumitrică, S.J. Kim, P. Nemes-Incze, C. Hwang, L.P. Biró, Nat. Phys. 8, 739–742 (2012)CrossRefGoogle Scholar
  31. 31.
    Z. Ni, H. Bu, M. Zou, H. Yi, K. Bi, Y. Chen, Phys. B Condens. Matter 405, 1301–1306 (2010)CrossRefGoogle Scholar
  32. 32.
    Y. Zhang, L. Liu, N. Xi, Y. Wang, Z. Dong, U.C. Wejinya, Sci. China Phys. Mech. Astron. 57, 663–667 (2014)CrossRefGoogle Scholar
  33. 33.
    J.S. Choi, J.-S. Kim, I.-S. Byun, D.H. Lee, M.J. Lee, B.H. Park, C. Lee, D. Yoon, H. Cheong, K.H. Lee, et al., Science 333, 607–610 (2011)CrossRefGoogle Scholar
  34. 34.
    A.K. Geim, I.V. Grigorieva, Nature 499, 419–425 (2013)CrossRefGoogle Scholar
  35. 35.
    K.S. Novoselov, A. Mishchenko, A. Carvalho, A.H. Castro Neto, Science 353, aac9439 (2016)CrossRefGoogle Scholar
  36. 36.
    C.N.R. Rao, A.K. Sood, Graphene: Synthesis, Properties, and Phenomena (Wiley, Weinheim, 2013)Google Scholar
  37. 37.
    D. Akinwande, C.J. Brennan, J.S. Bunch, P. Egberts, J.R. Felts, H. Gao, R. Huang, J.-S. Kim, T. Li, Y. Li, et al., Extreme Mech. Lett. 13, 42–77 (2017)CrossRefGoogle Scholar
  38. 38.
    G. Wang, Z. Dai, Y. Wang, P. Tan, L. Liu, Z. Xu, Y. Wei, R. Huang, Z. Zhang, Phys. Rev. Lett. 119, 036101 (2017)CrossRefGoogle Scholar
  39. 39.
    X. Chen, C. Yi, C. Ke, Appl. Phys. Lett. 106, 101907 (2015)CrossRefGoogle Scholar
  40. 40.
    L. Ruiz, W. Xia, Z. Meng, S. Keten, Carbon 82, 103–115 (2015)CrossRefGoogle Scholar
  41. 41.
    M. Yamamoto, O. Pierre-Louis, J. Huang, M.S. Fuhrer, T.L. Einstein, W.G. Cullen, Phys. Rev. X 2, 041018 (2012)Google Scholar
  42. 42.
    A. Kŏsmrlj, D.R. Nelson, Phys. Rev. E 88, 012136 (2013)CrossRefGoogle Scholar
  43. 43.
    J.A. Aronovitz, T.C. Lubensky, Phys. Rev. Lett. 60, 2634 (1988)CrossRefGoogle Scholar
  44. 44.
    K. Novoselov, D. Jiang, F. Schedin, T. Booth, V. Khotkevich, S. Morozov, A. Geim, Proc. Natl. Acad. Sci. U. S. A. 102, 10451–10453 (2005)CrossRefGoogle Scholar
  45. 45.
    J. Venables, G. Spiller, M. Hanbucken, Rep. Prog. Phys. 47, 399 (1984)CrossRefGoogle Scholar
  46. 46.
    J. Evans, P. Thiel, M.C. Bartelt, Surf. Sci. Rep. 61, 1–128 (2006)CrossRefGoogle Scholar
  47. 47.
    A. Fasolino, J. Los, M.I. Katsnelson, Nat. Mater. 6, 858–861 (2007)CrossRefGoogle Scholar
  48. 48.
    R.J. Nicholl, H.J. Conley, N.V. Lavrik, I. Vlassiouk, Y.S. Puzyrev, V.P. Sreenivas, S.T. Pantelides, K.I. Bolotin, Nat. Commun. 6, 8789 (2015)CrossRefGoogle Scholar
  49. 49.
    E.V. Castro, H. Ochoa, M.I. Katsnelson, R.V. Gorbachev, D.C. Elias, K.S. Novoselov, A.K. Geim, F. Guinea, Phys. Rev. Lett. 105, 266601 (2010)CrossRefGoogle Scholar
  50. 50.
    P. Partovi-Azar, N. Nafari, M.R.R. Tabar, Phys. Rev. B 83, 165434 (2011)CrossRefGoogle Scholar
  51. 51.
    M.B. Amar, Y. Pomeau, Proc. Math. Phys. Eng. Sci. 453, 729–755 (1997)CrossRefGoogle Scholar
  52. 52.
    P. Grandgeorge, N. Krins, A. Hourlier-Fargette, C. Laberty-Robert, S. Neukirch, A. Antkowiak, Science 360, 296–299 (2018)CrossRefGoogle Scholar
  53. 53.
    T.M.G. Mohiuddin, A. Lombardo, R.R. Nair, A. Bonetti, G. Savini, R. Jalil, N. Bonini, D.M. Basko, C. Galiotis, N. Marzari, et al. Phys. Rev. B 79, 205433 (2009)CrossRefGoogle Scholar
  54. 54.
    A.C. Ferrari, D.M. Basko, Nat. Nanotechnol. 8, 235 (2013)CrossRefGoogle Scholar
  55. 55.
    N. Colthup, Introduction to Infrared and Raman Spectroscopy (Elsevier, Burlington, 2012)Google Scholar
  56. 56.
    D. Yoon, Y.-W. Son, H. Cheong, Nano Lett. 11, 3227–3231 (2011)CrossRefGoogle Scholar
  57. 57.
    L. Malard, M. Pimenta, G. Dresselhaus, M. Dresselhaus, Phys. Rep. 473, 51–87 (2009)CrossRefGoogle Scholar
  58. 58.
    F. Yavari, C. Kritzinger, C. Gaire, L. Song, H. Gulapalli, T. Borca-Tasciuc, P.M. Ajayan, N. Koratkar, Small 6, 2535–2538 (2010)CrossRefGoogle Scholar
  59. 59.
    Z.H. Ni, T. Yu, Z.Q. Luo, Y.Y. Wang, L. Liu, C.P. Wong, J. Miao, W. Huang, Z.X. Shen, ACS Nano 3, 569–574 (2009)CrossRefGoogle Scholar
  60. 60.
    L.G. Cançado, A. Jorio, E.M. Ferreira, F. Stavale, C. Achete, R. Capaz, M. Moutinho, A. Lombardo, T. Kulmala, A. Ferrari, Nano Lett. 11, 3190–3196 (2011)CrossRefGoogle Scholar
  61. 61.
    R. Roldán, A. Fasolino, K.V. Zakharchenko, M.I. Katsnelson, Phys. Rev. B 83, 174104 (2011)CrossRefGoogle Scholar
  62. 62.
    G. López-Polín, M. Jaafar, F. Guinea, R. Roldán, C. Gómez-Navarro, J. Gómez-Herrero, Carbon 124, 42–48 (2017)CrossRefGoogle Scholar
  63. 63.
    R.J.T. Nicholl, N.V. Lavrik, I. Vlassiouk, B.R. Srijanto, K.I. Bolotin, Phys. Rev. Lett. 118, 266101 (2017)CrossRefGoogle Scholar
  64. 64.
    Y. Huang, J. Wu, K.-C. Hwang, Phys. Rev. B 74, 245413 (2006)CrossRefGoogle Scholar
  65. 65.
    A. Kŏsmrlj, D.R. Nelson, Phys. Rev. X 7, 011002 (2017)Google Scholar
  66. 66.
    P. Le Doussal, L. Radzihovsky, Phys. Rev. Lett. 69, 1209 (1992)CrossRefGoogle Scholar
  67. 67.
    D. Nelson, L. Peliti, J. Phys. 48, 1085–1092 (1987)CrossRefGoogle Scholar
  68. 68.
    P. Flory, M. Volkenstein, et al., Statistical Mechanics of Chain Molecules (Hanser Publishers, Munich, 1969)CrossRefGoogle Scholar
  69. 69.
    P.-G. De Gennes, P.-G. Gennes, Scaling Concepts in Polymer Physics (Cornell University Press, Ithaca/London, 1979)Google Scholar
  70. 70.
    M.J. Bowick, A. Kŏsmrlj, D.R. Nelson, R. Sknepnek, Phys. Rev. B 95, 104109 (2017)CrossRefGoogle Scholar
  71. 71.
    M.K. Blees, A.W. Barnard, P.A. Rose, S.P. Roberts, K.L. McGill, P.Y. Huang, A.R. Ruyack, J.W. Kevek, B. Kobrin, D.A. Muller, et al., Nature 524, 204 (2015)CrossRefGoogle Scholar
  72. 72.
    W. CAN, O. LOG, Bioscience 51, 341–352 (2001)CrossRefGoogle Scholar
  73. 73.
    N. Lindahl, D. Midtvedt, J. Svensson, O.A. Nerushev, N. Lindvall, A. Isacsson, E.E. Camp- bell, Nano Lett. 12, 3526–3531 (2012)CrossRefGoogle Scholar
  74. 74.
    S. Scharfenberg, D. Rocklin, C. Chialvo, R.L. Weaver, P.M. Goldbart, N. Mason, Appl. Phys. Lett. 98, 091908 (2011)CrossRefGoogle Scholar
  75. 75.
    P.L. De Andres, F. Guinea, M.I. Katsnelson, Phys. Rev. B 86, 144103 (2012)CrossRefGoogle Scholar
  76. 76.
    G. López-Polín, M. Ortega, J. Vilhena, I. Alda, J. Gomez-Herrero, P.A. Serena, C. Gomez- Navarro, R. Pérez, Carbon 116, 670–677 (2017)CrossRefGoogle Scholar
  77. 77.
    X. Hu, P. Yasaei, J. Jokisaari, S. Öğüt, A. Salehi-Khojin, R.F. Klie, Phys. Rev. Lett. 120, 055902 (2018)CrossRefGoogle Scholar
  78. 78.
    W. Bao, F. Miao, Z. Chen, H. Zhang, W. Jang, C. Dames, C.N. Lau, Nat. Nanotechnol. 4, 562–566 (2009)CrossRefGoogle Scholar
  79. 79.
    C. Moreno, M. Vilas-Varela, B. Kretz, A. Garcia-Lekue, M.V. Costache, M. Paradinas, M. Panighel, G. Ceballos, S.O. Valenzuela, D. Peña, et al., Science 360, 199–203 (2018)CrossRefGoogle Scholar
  80. 80.
    J.D. Eshelby, Proc. R. Soc. Lond. A Math. Phys. Eng. Sci. 241, 376–396 (1957)Google Scholar
  81. 81.
    R.W. Style, R. Boltyanskiy, B. Allen, K.E. Jensen, H.P. Foote, J.S. Wettlaufer, E.R. Dufresne, Nat. Phys. 11, 82–87 (2015)CrossRefGoogle Scholar
  82. 82.
    N. Fleck, G. Muller, M. Ashby, J. Hutchinson, Acta Metall. Mater. 42, 475–487 (1994)CrossRefGoogle Scholar
  83. 83.
    J. GREER, W. OLIVER, W. NIX, Acta Mater. 54, 1705–1705 (2006)CrossRefGoogle Scholar
  84. 84.
    T. Zhang, X. Li, H. Gao, Extreme Mech. Lett 1, 3–8 (2014)CrossRefGoogle Scholar
  85. 85.
    T. Zhang, H. Gao, J. Appl. Mech. 82, 051001 (2015)CrossRefGoogle Scholar
  86. 86.
    N.P. Mitchell, V. Koning, V. Vitelli, W.T.M. Irvine, Nat. Mater. 16, 89–93 (2017)CrossRefGoogle Scholar
  87. 87.
    G. López-Polín, J. Gómez-Herrero, C. Gómez-Navarro, Nano Lett. 15, 2050–2054 (2015)CrossRefGoogle Scholar
  88. 88.
    A.A. Griffith, M. Eng, Philos. Trans. R. Soc. Lond. A 221, 163–198 (1921)CrossRefGoogle Scholar
  89. 89.
    J.N. Grima, S. Winczewski, L. Mizzi, M.C. Grech, R. Cauchi, R. Gatt, D. Attard, K.W. Wojciechowski, J. Rybicki, Adv. Mater. 27, 1455–1459 (2014)CrossRefGoogle Scholar
  90. 90.
    H. Qin, Y. Sun, J.Z. Liu, M. Li, Y. Liu, Nanoscale 9, 4135–4142 (2017)CrossRefGoogle Scholar
  91. 91.
    C. Wang, L. Lan, Y. Liu, H. Tan, Comput. Mater. Sci. 77, 250–253 (2013)CrossRefGoogle Scholar
  92. 92.
    T. Zhang, X. Li, H. Gao, J. Mech. Phys. Solids 67, 2–13 (2014)CrossRefGoogle Scholar
  93. 93.
    I. Gornyi, V.Y. Kachorovskii, A. Mirlin, Phys. Rev. B 92, 155428 (2015)CrossRefGoogle Scholar
  94. 94.
    J. Annett, G.L. Cross, Nature 535, 271–275 (2016)CrossRefGoogle Scholar
  95. 95.
    E. Hamm, P. Reis, M. LeBlanc, B. Roman, E. Cerda, Nat. Mater. 7, 386–390 (2008)CrossRefGoogle Scholar
  96. 96.
    X. Chen, L. Zhang, Y. Zhao, X. Wang, C. Ke, J. Appl. Phys. 116, 164301 (2014)CrossRefGoogle Scholar
  97. 97.
    Z. Budrikis, S. Zapperi, Nano Lett. 16, 387–391 (2015)CrossRefGoogle Scholar
  98. 98.
    J. Bunch, M. Dunn, Solid State Commun. 152, 1359–1364 (2012)CrossRefGoogle Scholar
  99. 99.
    S.P. Koenig, N.G. Boddeti, M.L. Dunn, J.S. Bunch, Nat. Nanotechnol. 6, 543–546 (2011)CrossRefGoogle Scholar
  100. 100.
    D. Sen, K.S. Novoselov, P.M. Reis, M.J. Buehler, Small 6, 1108–1116 (2010)CrossRefGoogle Scholar
  101. 101.
    O.C. Compton, S.T. Nguyen, Small 6, 711–723 (2010)CrossRefGoogle Scholar
  102. 102.
    M.J. Allen, V.C. Tung, R.B. Kaner, Chem. Rev. 110, 132–145 (2009)CrossRefGoogle Scholar
  103. 103.
    M. Yi, Z. Shen, Carbon 78, 622–626 (2014)CrossRefGoogle Scholar
  104. 104.
    D.H. Seo, S. Pineda, J. Fang, Y. Gozukara, S. Yick, A. Bendavid, S.K.H. Lam, A.T. Murdock, A.B. Murphy, Z.J. Han, et al. Nat. Commun. 8, 14217 (2017)CrossRefGoogle Scholar
  105. 105.
    C. Mattevi, H. Kim, M. Chhowalla, J. Mater. Chem. 21, 3324–3334 (2011)CrossRefGoogle Scholar
  106. 106.
    D. Bandurin, I. Torre, R.K. Kumar, M.B. Shalom, A. Tomadin, A. Principi, G. Auton, E. Khestanova, K. Novoselov, I. Grigorieva, et al., Science 351, 1055–1058 (2016)CrossRefGoogle Scholar
  107. 107.
    W. Yang, G. Chen, Z. Shi, C.-C. Liu, L. Zhang, G. Xie, M. Cheng, D. Wang, R. Yang, D. Shi, et al. Nat. Mater. 12, 792–797 (2013)CrossRefGoogle Scholar
  108. 108.
    P. Sutter, J.T. Sadowski, E. Sutter, Phys. Rev. B 80, 245411 (2009)CrossRefGoogle Scholar
  109. 109.
    C.H. Lui, L. Liu, K.F. Mak, G.W. Flynn, T.F. Heinz, Nature 462, 339 (2009)CrossRefGoogle Scholar
  110. 110.
    A.L.V. de Parga, F. Calleja, B. Borca, M.C.G. Passeggi, J.J. Hinarejos, F. Guinea, R. Miranda, Phys. Rev. Lett. 100, 056807 (2008)CrossRefGoogle Scholar
  111. 111.
    S. Goler, C. Coletti, V. Tozzini, V. Piazza, T. Mashoff, F. Beltram, V. Pellegrini, S. Heun, J. Phys. Chem. C 117, 11506–11513 (2013)CrossRefGoogle Scholar
  112. 112.
    S.J. Chae, F. Güneş, K.K. Kim, E.S. Kim, G.H. Han, S.M. Kim, H.-J. Shin, S.-M. Yoon, J.-Y. Choi, M.H. Park, et al. Adv. Mater. 21, 2328–2333 (2009)CrossRefGoogle Scholar
  113. 113.
    N. Liu, Z. Pan, L. Fu, C. Zhang, B. Dai, Z. Liu, Nano Res. 4, 996–1004 (2011)CrossRefGoogle Scholar
  114. 114.
    C.T. Cherian, F. Giustiniano, I. Martin-Fernandez, H. Andersen, J. Balakrishnan, B. Ӧzyilmaz, Small 11, 189–194 (2015)CrossRefGoogle Scholar
  115. 115.
    L. Gao, G.-X. Ni, Y. Liu, B. Liu, A.H.C. Neto, K.P. Loh, Nature 505, 190–194 (2014)CrossRefGoogle Scholar
  116. 116.
    X. Liang, B.A. Sperling, I. Calizo, G. Cheng, C.A. Hacker, Q. Zhang, Y. Obeng, K. Yan, H. Peng, Q. Li, et al., ACS Nano 5, 9144–9153 (2011)CrossRefGoogle Scholar
  117. 117.
    N. Levy, S. Burke, K. Meaker, M. Panlasigui, A. Zettl, F. Guinea, A.C. Neto, M. Crommie, Science 329, 544–547 (2010)CrossRefGoogle Scholar
  118. 118.
    S. Bӧttcher, H. Vita, M. Weser, F. Bisti, Y.S. Dedkov, K. Horn, J. Phys. Chem. Lett. 8, 3668–3672 (2017)CrossRefGoogle Scholar
  119. 119.
    Q. Pei, Y. Zhang, V. Shenoy, Carbon 48, 898–904 (2010)CrossRefGoogle Scholar
  120. 120.
    P. Poulin, R. Jalili, W. Neri, F. Nallet, T. Divoux, A. Colin, S.H. Aboutalebi, G. Wallace, C. Zakri, Proc. Natl. Acad. Sci. 201605121 (2016)Google Scholar
  121. 121.
    S.A. Svatek, O.R. Scott, J.P. Rivett, K. Wright, M. Baldoni, E. Bichoutskaia, T. Taniguchi, K. Watanabe, A.J. Marsden, N.R. Wilson, et al., Nano Lett. 15, 159–164 (2014)CrossRefGoogle Scholar
  122. 122.
    J.H. Lee, A. Avsar, J. Jung, J.Y. Tan, K. Watanabe, T. Taniguchi, S. Natarajan, G. Eda, S. Adam, A.H. Castro Neto, et al., Nano Lett. 15, 319–325 (2014)CrossRefGoogle Scholar
  123. 123.
    F. Schedin, A.K. Geim, S.V. Morozov, E.W. Hill, P. Blake, M.I. Katsnelson, K.S. Novoselov, Nat. Mater. 6, 652–655 (2007)CrossRefGoogle Scholar
  124. 124.
    Z. Gao, H. Xia, J. Zauberman, M. Tomaiuolo, J. Ping, Q. Zhang, P. Ducos, H. Ye, S. Wang, X. Yang, et al., Nano Lett. 18, 3509–3515 (2018)CrossRefGoogle Scholar
  125. 125.
    C. Py, P. Reverdy, L. Doppler, J. Bico, B. Roman, C.N. Baroud, Phys. Rev. Lett. 98, 156103 (2007)CrossRefGoogle Scholar
  126. 126.
    M. Boudot, H. Elettro, D. Grosso, ACS Nano 10, 10031–10040 (2016)CrossRefGoogle Scholar
  127. 127.
    J. Kim, J.A. Hanna, M. Byun, C.D. Santangelo, R.C. Hayward, Science 335, 1201–1205 (2012)CrossRefGoogle Scholar
  128. 128.
    Y. Zhang, F. Zhang, Z. Yan, Q. Ma, X. Li, Y. Huang, J.A. Rogers, Nature Reviews Materials 2, 17019 (2017)CrossRefGoogle Scholar
  129. 129.
    B. Florijn, C. Coulais, M. van Hecke, Phys. Rev. Lett. 113, 175503 (2014)CrossRefGoogle Scholar
  130. 130.
    J. Zang, S. Ryu, N. Pugno, Q. Wang, Q. Tu, M.J. Buehler, X. Zhao, Nat. Mater. 12, 321–325 (2013)CrossRefGoogle Scholar
  131. 131.
    M.Z. Miskin, K.J. Dorsey, B. Bircan, Y. Han, D.A. Muller, P.L. McEuen, I. Cohen, Proc. Natl. Acad. Sci. 115, 466–470 (2018)CrossRefGoogle Scholar
  132. 132.
    M. Poot, H.S. van der Zant, Appl. Phys. Lett. 92, 063111 (2008)CrossRefGoogle Scholar
  133. 133.
    K.S. Novoselov, V.I. Falko, L. Colombo, P.R. Gellert, M.G. Schwab, K. Kim, Nature 490, 192–200 (2012)CrossRefGoogle Scholar
  134. 134.
    Y. Liu, Z. Xu, Q. Zheng, J. Mech. Phys. Solids 59, 1613–1622 (2011)CrossRefGoogle Scholar
  135. 135.
    C. Chen, S. Rosenblatt, K.I. Bolotin, W. Kalb, P. Kim, I. Kymissis, H.L. Stormer, T.F. Heinz, J. Hone, Nat. Nanotechnol. 4, 861–867 (2009)CrossRefGoogle Scholar
  136. 136.
    J.S. Bunch, A.M. van der Zande, S.S. Verbridge, I.W. Frank, D.M. Tanenbaum, J.M. Parpia, H.G. Craighead, P.L. McEuen, Science 315, 490–493 (2007)CrossRefGoogle Scholar
  137. 137.
    F. Xia, D.B. Farmer, Y.-m. Lin, P. Avouris, Nano Lett. 10, 715–718 (2010)CrossRefGoogle Scholar
  138. 138.
    J. Berashevich, T. Chakraborty, Phys. Rev. B 80, 033404 (2009)CrossRefGoogle Scholar
  139. 139.
    D.C. Elias, R.R. Nair, T. Mohiuddin, S. Morozov, P. Blake, M. Halsall, A. Ferrari, D. Boukhvalov, M. Katsnelson, A. Geim, et al., Science 323, 610–613 (2009)CrossRefGoogle Scholar
  140. 140.
    R. Phillipson, C.J. Lockhart de la Rosa, J. Teyssandier, P. Walke, D. Waghray, Y. Fujita, J. Adisoejoso, K.S. Mali, I. Asselberghs, C. Huyghebaert, et al. Nanoscale 8, 20017–20026 (2016)CrossRefGoogle Scholar
  141. 141.
    X. Wang, Y. Ouyang, X. Li, H. Wang, J. Guo, H. Dai, Phys. Rev. Lett. 100, 206803 (2008)CrossRefGoogle Scholar
  142. 142.
    M.I. Katsnelson, Mater. Today 10, 20–27 (2007)CrossRefGoogle Scholar
  143. 143.
    G. Gui, J. Li, J. Zhong, Phys. Rev. B 78, 075435 (2008)CrossRefGoogle Scholar
  144. 144.
    F. Guinea, M. Katsnelson, A. Geim, Nat. Phys. 6, 30 (2010)CrossRefGoogle Scholar
  145. 145.
    V.M. Pereira, A.H. Castro Neto, H.Y. Liang, L. Mahadevan, Phys. Rev. Lett. 105, 156603 (2010)CrossRefGoogle Scholar
  146. 146.
    J. Martin, N. Akerman, G. Ulbricht, T. Lohmann, J.v. Smet, K. Von Klitzing, A. Yacoby, Nat. Phys. 4, 144 (2008)CrossRefGoogle Scholar
  147. 147.
    V. Tozzini, V. Pellegrini, Phys. Chem. Chem. Phys. 15, 80–89 (2013)CrossRefGoogle Scholar
  148. 148.
    C. Ataca, E. Aktu¨rk, S. Ciraci, H. Ustunel, Appl. Phys. Lett. 93, 043123 (2008)CrossRefGoogle Scholar
  149. 149.
    A. Tapia, C. Acosta, R. Medina-Esquivel, G. Canto, Comput. Mater. Sci. 50, 2427–2432 (2011)CrossRefGoogle Scholar
  150. 150.
    V. Tozzini, V. Pellegrini, J. Phys. Chem. C 115, 25523–25528 (2011)CrossRefGoogle Scholar
  151. 151.
    Y. Han, Z. Xu, C. Gao, Adv. Funct. Mater. 23, 3693–3700 (2013)CrossRefGoogle Scholar
  152. 152.
    R. Joshi, P. Carbone, F.-C. Wang, V.G. Kravets, Y. Su, I.V. Grigorieva, H. Wu, A.K. Geim, R.R. Nair, Science 343, 752–754 (2014)CrossRefGoogle Scholar
  153. 153.
    M. Ma, G. Tocci, A. Michaelides, G. Aeppli, Nat. Mater. 15, 66–71 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Departamento de FísicaUniversidad de Santiago de ChileSantiagoChile

Personalised recommendations