Introduction to Surface Instabilities and Wrinkle Formation

  • C. M. González-HenríquezEmail author
  • M. A. Sarabia Vallejos
  • Juan Rodríguez-HernándezEmail author


In contrast to conventional patterning methodologies, the use of surface instabilities to pattern polymer surfaces does not require expensive equipment or long and multistep procedures to obtain surface microstructures. In addition, surface instabilities enable the fabrication of intricate and complex multiscale surface features which are difficult to achieve, if not impossible, using conventional patterning techniques. These advantages together with the multiple alternatives to induce surface instabilities have made of these approaches interesting alternatives to pattern polymer surfaces. This chapter briefly summarizes the most common types of surface instabilities and provides a general overview of the main characteristics of each methodology. Finally, a brief summary of the book organization, including the chapter distribution as well as the objectives, will be described.


Surface instabilities Wrinkling Micro-/nanostructured polymer surfaces Thermodynamics Self-assembly 



The authors acknowledge financial support given by FONDECYT Grant N° 1170209. M.A. Sarabia acknowledges the financial support given by CONICYT through the doctoral program scholarship grant. J. Rodriguez-Hernandez acknowledges financial support from Ministerio de Economia y Competitividad (MINECO) (Project MAT2016-78437-R, Fondos FEDER EU) and, finally, VRAC Grant Number L216-04 of Universidad Tecnológica Metropolitana.


  1. 1.
    W. Tan, T.A. Desai, Microfluidic patterning of cells in extracellular matrix biopolymers: Effects of channel size, cell type, and matrix composition on pattern integrity. Tissue Eng. 9(2), 255–267 (2003)CrossRefGoogle Scholar
  2. 2.
    M.J. Dalby, M.O. Riehle, S.J. Yarwood, C.D.W. Wilkinson, A.S.G. Curtis, Nucleus alignment and cell signaling in fibroblasts: Response to a micro-grooved topography. Exp. Cell Res. 284(2), 274–282 (2003)CrossRefGoogle Scholar
  3. 3.
    S.Y. Chou, Nanoimprint lithography and lithographically induced self-assembly. MRS Bull. 26(7), 512–517 (2001)CrossRefGoogle Scholar
  4. 4.
    H.O. Jacobs, G.M. Whitesides, Submicrometer patterning of charge in thin-film electrets. Science 291(5509), 1763–1766 (2001)CrossRefGoogle Scholar
  5. 5.
    A.K. Geim, S.V. Dubonos, I.V. Grigorieva, K.S. Novoselov, A.A. Zhukov, S.Y. Shapoval, Microfabricated adhesive mimicking gecko foot-hair. Nat. Mater. 2(7), 461–463 (2003)CrossRefGoogle Scholar
  6. 6.
    O. Lyutakov, J. Tuma, I. Huttel, V. Prajzler, J. Siegel, V. Svorcik, Polymer surface patterning by laser scanning. Appl. Phys. B Lasers Opt. 110(4), 539–549 (2013)CrossRefGoogle Scholar
  7. 7.
    C. Acikgoz, M.A. Hempenius, J. Huskens, G.J. Vancso, Polymers in conventional and alternative lithography for the fabrication of nanostructures. Eur. Polym. J. 47(11), 2033–2052 (2011)CrossRefGoogle Scholar
  8. 8.
    R.S. Kane, S. Takayama, E. Ostuni, D.E. Ingber, G.M. Whitesides, Patterning proteins and cells using soft lithography. Biomaterials 20(23–24), 2363–2376 (1999)CrossRefGoogle Scholar
  9. 9.
    Y.N. Xia, G.M. Whitesides, Soft lithography. Annu. Rev. Mater. Sci. 28, 153–184 (1998)CrossRefGoogle Scholar
  10. 10.
    E. Rebollar, J.R. Vazquez de Aldana, I. Martin-Fabiani, M. Hernandez, D.R. Rueda, T.A. Ezquerra, C. Domingo, P. Moreno, M. Castillejo, Assessment of femtosecond laser induced periodic surface structures on polymer films. Phys. Chem. Chem. Phys. 15(27), 11287–11298 (2013)CrossRefGoogle Scholar
  11. 11.
    B. Farshchian, S.M. Hurst, J. Lee, S. Park, 3D molding of hierarchical micro- and nanostructures. J. Micromech. Microeng. 21(3) (2011)Google Scholar
  12. 12.
    G. Shi, N. Lu, H. Xu, Y. Wang, S. Shi, H. Li, Y. Li, L. Chi, Fabrication of hierarchical structures by unconventional two-step imprinting. J. Colloid Interface Sci. 368, 655–659 (2012)CrossRefGoogle Scholar
  13. 13.
    S. Yang, D.L. Devoe, Microfluidic device fabrication by thermoplastic hot-embossing. Methods Mol. Biol. 949, 115–123 (2013)CrossRefGoogle Scholar
  14. 14.
    M.T. Eliason, J.L. Charest, B.A. Simmons, A.J. Garcia, W.P. King, Nanoimprint fabrication of polymer cell substrates with combined microscale and nanoscale topography. J. Vac. Sci. Technol. B 25(4), L31–L34 (2007)CrossRefGoogle Scholar
  15. 15.
    T.E. Kimerling, W.D. Liu, B.H. Kim, D.G. Yao, Rapid hot embossing of polymer microfeatures. Microsyst. Technol. Micro Nanosyst. -Inf. Storage Process. Syst. 12(8), 730–735 (2006)Google Scholar
  16. 16.
    H.S. Lee, T.H. Kwon, J.H. Kim, S.S. Chang, Replication of nanostructures on microstructures by intermediate film mold inserted hot embossing process. Microsyst. Technol. Micro Nanosyst. -Inf. Storage Process. Syst. 14(8), 1149–1155 (2008)Google Scholar
  17. 17.
    C.Y. Kuan, J.M. Chou, I.C. Leu, M.H. Hon, Sol-gel-derived ZnO coating with Nanopatterns fabricated by nanoimprinting. J. Am. Ceram. Soc. 91(10), 3160–3166 (2008)CrossRefGoogle Scholar
  18. 18.
    H. Lan, H. Liu, UV-nanoimprint lithography: Structure, materials and fabrication of flexible molds. J. Nanosci. Nanotechnol. 13(5), 3145–3172 (2013)CrossRefGoogle Scholar
  19. 19.
    L.J. Guo, Nanoimprint lithography: Methods and material requirements. Adv. Mater. 19(4), 495–513 (2007)CrossRefGoogle Scholar
  20. 20.
    S.A. Ruiz, C.S. Chen, Microcontact printing: A tool to pattern. Soft Matter 3(2), 168–177 (2007)CrossRefGoogle Scholar
  21. 21.
    J. Rodríguez-Hernández, C. Drummond, Polymer Surfaces in Motion: Unconventional Patterning Methods (Springer, Cham, 2015)CrossRefGoogle Scholar
  22. 22.
    S. Reich, Y. Cohen, Phase separation of polymer blends in thin films. J. Polym. Sci. Polym. Phys 19(8), 1255–1267 (1981)CrossRefGoogle Scholar
  23. 23.
    A.E. Nesterov, Y.S. Lipatov, V.V. Horichko, O.T. Gritsenko, Filler effects on the compatibility and phase separation kinetics of poly(vinyl acetate)-poly(methyl methacrylate) mixtures. Polymer 33(3), 619–622 (1992)CrossRefGoogle Scholar
  24. 24.
    R.C. Ball, R.L.H. Essery, Spinodal decomposition and pattern formation near surfaces. J. Phys. Condens. Matter 2(51), 10303–10320 (1990)CrossRefGoogle Scholar
  25. 25.
    R.A.L. Jones, L.J. Norton, E.J. Kramer, F.S. Bates, P. Wiltzius, Surface-directed spinodal decomposition. Phys. Rev. Lett. 66(10), 1326–1329 (1991)CrossRefGoogle Scholar
  26. 26.
    R. Xie, A. Karim, J.F. Douglas, C.C. Han, R.A. Weiss, Spinodal dewetting of thin polymer films. Phys. Rev. Lett. 81(6), 1251–1254 (1998)CrossRefGoogle Scholar
  27. 27.
    A.M. Higgins, R.A.L. Jones, Anisotropic spinodal dewetting as a route to self-assembly of patterned surfaces. Nature 404(6777), 476–478 (2000)CrossRefGoogle Scholar
  28. 28.
    P. Muller-Buschbaum, Dewetting and pattern formation in thin polymer films as investigated in real and reciprocal space. J. Phys. Condens. Matter 15(36), R1549–R1582 (2003)CrossRefGoogle Scholar
  29. 29.
    A. Karim, J.F. Douglas, B.P. Lee, S.C. Glotzer, J.A. Rogers, R.J. Jackman, E.J. Amis, G.M. Whitesides, Phase separation of ultrathin polymer-blend films on patterned substrates. Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 57(6), R6273–R6276 (1998)Google Scholar
  30. 30.
    B.D. Ermi, G. Nisato, J.F. Douglas, J.A. Rogers, A. Karim, Coupling between phase separation and surface deformation modes in self-organizing polymer blend films. Phys. Rev. Lett. 81(18), 3900–3903 (1998)CrossRefGoogle Scholar
  31. 31.
    G. Nisato, B.D. Ermi, J.F. Douglas, A. Karim, Excitation of surface deformation modes of a phase-separating polymer blend on a patterned substrate. Macromolecules 32(7), 2356–2364 (1999)CrossRefGoogle Scholar
  32. 32.
    D. Petera, M. Muthukumar, Effect of patterned surface on diblock-copolymer melts and polymer blends near the critical point. J. Chem. Phys. 107(22), 9640–9644 (1997)CrossRefGoogle Scholar
  33. 33.
    J.-W. Park, Y.-H. Cho, Surface-induced morphologies in thin films of a rod-coil diblock copolymer. Langmuir 22(26), 10898–10903 (2006)CrossRefGoogle Scholar
  34. 34.
    E. Schaffer, S. Harkema, R. Blossey, U. Steiner, Temperature-gradient-induced instability in polymer films. Europhys. Lett. 60(2), 255–261 (2002)CrossRefGoogle Scholar
  35. 35.
    E. Schaffer, S. Harkema, M. Roerdink, R. Blossey, U. Steiner, Thermomechanical lithography: Pattern replication using a temperature gradient driven instability. Adv. Mater. 15(6), 514–517 (2003)CrossRefGoogle Scholar
  36. 36.
    P. Deshpande, L.F. Pease, L. Chen, S.Y. Chou, W.B. Russel, Cylindrically symmetric electrohydrodynamic patterning. Phys. Rev. E 70(4) (2004)Google Scholar
  37. 37.
    L.F. Pease, W.B. Russel, Electrostatically induced submicron patterning of thin perfect and leaky dielectric films: A generalized linear stability analysis. J. Chem. Phys. 118(8), 3790–3803 (2003)CrossRefGoogle Scholar
  38. 38.
    L.F. Pease, W.B. Russel, Limitations on length scales for electrostatically induced submicrometer pillars and holes. Langmuir 20(3), 795–804 (2004)CrossRefGoogle Scholar
  39. 39.
    L.F. Pease, W.B.R. III, Charge driven, electrohydrodynamic patterning of thin films. J. Chem. Phys. 125(18) (2006)CrossRefGoogle Scholar
  40. 40.
    N. Wu, L.F. Pease, W.B.R. III, Toward large-scale alignment of electrohydrodynamic patterning of thin polymer films. Adv. Funct. Mater. 16(15), 1992–1999 (2006)CrossRefGoogle Scholar
  41. 41.
    S. Herminghaus, Dynamical instability of thin liquid films between conducting media. Phys. Rev. Lett. 83(12), 2359–2361 (1999)CrossRefGoogle Scholar
  42. 42.
    G. Turk, Generating Textures on Arbitrary Surfaces Using Reaction-Diffusion (1991)Google Scholar
  43. 43.
    T.A. Witten, L.M. Sander, Diffusion-limited aggregation. Phys. Rev. B 27(9), 5686–5697 (1983)CrossRefGoogle Scholar
  44. 44.
    J. Rodríguez-Hernández, Wrinkled interfaces: Taking advantage of surface instabilities to pattern polymer surfaces. Prog. Polym. Sci. 42, 1–41 (2015)CrossRefGoogle Scholar
  45. 45.
    A. Agrawal, J. Park, D.Y. Ryu, P.T. Hammond, T.P. Russell, G.H. McKinley, Controlling the location and spatial extent of nanobubbles using hydrophobically nanopatterned surfaces. Nano Lett. 5(9), 1751–1756 (2005)CrossRefGoogle Scholar
  46. 46.
    I. Siretanu, J.P. Chapel, C. Drummond, Water-ions induced Nanostructuration of hydrophobic polymer surfaces. ACS Nano 5(4), 2939–2947 (2011)CrossRefGoogle Scholar
  47. 47.
    P. Janda, O. Frank, Z. Bastl, M. Klementova, H. Tarabkova, L. Kavan, Nanobubble-assisted formation of carbon nanostructures on basal plane highly ordered pyrolytic graphite exposed to aqueous media. Nanotechnology 21(9) (2010)CrossRefGoogle Scholar
  48. 48.
    J. Aitkek, Breath figures. Nature 86, 516–517 (1911)CrossRefGoogle Scholar
  49. 49.
    J. Aitkek, Breath figures. Nature 90, 619–621 (1912)CrossRefGoogle Scholar
  50. 50.
    J.W. Giltay, Breath figures. Nature 86, 585–586 (1911)CrossRefGoogle Scholar
  51. 51.
    L. Rayleigh, Breath figures. Nature 86, 416–417 (1911)CrossRefGoogle Scholar
  52. 52.
    L. Rayleigh, Breath figures. Nature 90, 436–438 (1912)CrossRefGoogle Scholar
  53. 53.
    G. Lu, W. Li, J.M. Yao, G. Zhang, B. Yang, J.C. Shen, Fabricating ordered two-dimensional arrays of polymer rings with submicrometer-sized features on patterned self-assembled monolayers by dewetting. Adv. Mater. 14(15), 1049 (2002)CrossRefGoogle Scholar
  54. 54.
    M. Byun, W. Han, B. Li, X. Xin, Z. Lin, An unconventional route to hierarchically ordered block copolymers on a gradient patterned surface through controlled evaporative self-assembly. Angew. Chem. Int. Ed. 52(4), 1122–1127 (2013)CrossRefGoogle Scholar
  55. 55.
    K. Fukunaga, H. Elbs, R. Magerle, G. Krausch, Large-scale alignment of ABC block copolymer microdomains via solvent vapor treatment. Macromolecules 33(3), 947–953 (2000)CrossRefGoogle Scholar
  56. 56.
    E. Ibarboure, A. Bousquet, G. Toquer, E. Papon, J. Rodriguez-Hernandez, Tunable hierarchical assembly on polymer surfaces: Combining microphase and macrophase separation in copolymer/homopolymer blends. Langmuir 24(13), 6391–6394 (2008)CrossRefGoogle Scholar
  57. 57.
    M. Boltau, S. Walheim, J. Mlynek, G. Krausch, U. Steiner, Surface-induced structure formation of polymer blends on patterned substrates. Nature 391(6670), 877–879 (1998)CrossRefGoogle Scholar
  58. 58.
    E. Schaffer, T. Thurn-Albrecht, T.P. Russell, U. Steiner, Electrically induced structure formation and pattern transfer. Nature 403(6772), 874–877 (2000)CrossRefGoogle Scholar
  59. 59.
    H. Vandeparre, S. Gabriele, F. Brau, C. Gay, K.K. Parker, P. Damman, Hierarchical wrinkling patterns. Soft Matter 6(22), 5751–5756 (2010)CrossRefGoogle Scholar
  60. 60.
    M. Guvendiren, S. Yang, J.A. Burdick, Swelling-induced surface patterns in hydrogels with gradient crosslinking density. Adv. Funct. Mater. 19(19), 3038–3045 (2009)CrossRefGoogle Scholar
  61. 61.
    A. Muñoz-Bonilla, M. Fernández-García, J. Rodríguez-Hernández, Towards hierarchically ordered functional porous polymeric surfaces prepared by the breath figures approach. Prog. Polym. Sci. 39(3), 510–514 (2014)CrossRefGoogle Scholar
  62. 62.
    P. Escale, L. Rubatat, L. Billon, M. Save, Recent advances in honeycomb-structured porous polymer films prepared via breath figures. Eur. Polym. J. 48(6), 1001–1025 (2012)CrossRefGoogle Scholar
  63. 63.
    H. Tarabkova, P. Janda, Nanobubble assisted nanopatterning utilized for ex situ identification of surface nanobubbles. J. Phy. Condens. Matter 25(18) (2013)Google Scholar
  64. 64.
    L.V. Govor, G. Reiter, G.H. Bauer, J. Parisi, Treelike branched structures formed in dewetting thin films of a binary solution. Appl. Phys. Lett. 89(13) (2006)CrossRefGoogle Scholar
  65. 65.
    A. Sharma, G. Reiter, Morphological phase transitions in spontaneous dewetting of thin films on homogeneous and heterogeneous surfaces. Phase Transit. 75(4–5), 377–399 (2002)CrossRefGoogle Scholar
  66. 66.
    G. Reiter, Unstable thin polymer-films - rupture and dewetting processes. Langmuir 9(5), 1344–1351 (1993)CrossRefGoogle Scholar
  67. 67.
    A. Sharma, G. Reiter, Instability of thin polymer films on coated substrates: Rupture, dewetting, and drop formation. J. Colloid Interface Sci. 178(2), 383–399 (1996)CrossRefGoogle Scholar
  68. 68.
    S. Harkema, E. Schaffer, M.D. Morariu, U. Steiner, Pattern replication by confined dewetting. Langmuir 19(23), 9714–9718 (2003)CrossRefGoogle Scholar
  69. 69.
    P. Muller-Buschbaum, E. Bauer, O. Wunnicke, M. Stamm, The control of thin film morphology by the interplay of dewetting, phase separation and microphase separation. J. Phys. Condens. Matter 17(9), S363–S386 (2005)CrossRefGoogle Scholar
  70. 70.
    R. Mukherjee, A. Sharma, U. Steiner, Surface Instability and Pattern Formation in Thin Polymer Films, Generating Micro- and Nanopatterns on Polymeric Materials (Wiley), pp. 217–265Google Scholar
  71. 71.
    R.D. Deegan, O. Bakajin, T.F. Dupont, G. Huber, S.R. Nagel, T.A. Witten, Capillary flow as the cause of ring stains from dried liquid drops. Nature 389(6653), 827–829 (1997)CrossRefGoogle Scholar
  72. 72.
    V. Nguyen, K. Stebe, Patterning of small particles by a surfactant-enhanced Marangoni-Bénard instability. Phys. Rev. Lett. 88(16), 164501 (2002)CrossRefGoogle Scholar
  73. 73.
    E. Pauliac-Vaujour, A. Stannard, C. Martin, M. Blunt, I. Notingher, P. Moriarty, I. Vancea, U. Thiele, Fingering Instabilities in Dewetting Nanofluids. Phys. Rev. Lett. 100(17), 176102 (2008)CrossRefGoogle Scholar
  74. 74.
    G. Reiter, G. Castelein, P. Hoerner, G. Riess, A. Blumen, J.U. Sommer, Nanometer-scale surface patterns with long-range order created by crystallization of diblock copolymers. Phys. Rev. Lett. 83(19), 3844–3847 (1999)CrossRefGoogle Scholar
  75. 75.
    W. Koehler, A. Krekhov, W. Zimmermann, Thermal diffusion in polymer blends: Criticality and pattern formation, in: A.H.E. Muller, H.W. Schmidt (Eds.). Complex Macromol. Syst I2010, 145–198Google Scholar
  76. 76.
    R.A. Farrell, T.G. Fitzgerald, D. Borah, J.D. Holmes, M.A. Morris, Chemical interactions and their role in the microphase separation of block copolymer thin films. Int. J. Mol. Sci. 10(9), 3671–3712 (2009)CrossRefGoogle Scholar
  77. 77.
    H.-C. Kim, W.D. Hinsberg, Surface patterns from block copolymer self-assembly. J. Vac. Sci. Technol. A 26(6), 1369–1382 (2008)CrossRefGoogle Scholar
  78. 78.
    J.-U. Sommer, G. Reiter, The formation of ordered polymer structures at interfaces: A few intriguing aspects, in Ordered Polymeric Nanostructures at Surfaces, ed. by G.J. Vancso, G. Reiter (Springer, Berlin, 2006), pp. 1–36Google Scholar
  79. 79.
    V. Abetz, P.F.W. Simon, Phase behaviour and morphologies of block copolymers, in Block Copolymers I, ed. by V. Abetz (Springer, Berlin, 2005), pp. 125–212Google Scholar
  80. 80.
    R.A. Segalman, Patterning with block copolymer thin films. Mater. Sci. Eng. R. Rep. 48(6), 191–226 (2005)CrossRefGoogle Scholar
  81. 81.
    L. Xue, J. Zhang, Y. Han, Phase separation induced ordered patterns in thin polymer blend films. Prog. Polym. Sci. 37(4), 564–594 (2012)CrossRefGoogle Scholar
  82. 82.
    A. Bousquet, G. Pannier, E. Ibarboure, E. Papon, J. Rodríguez-Hernández, Control of the surface properties in polymer blends. J. Adhes. 83(4), 335–349 (2007)CrossRefGoogle Scholar
  83. 83.
    A. Bousquet, E. Ibarboure, F.J. Teran, L. Ruiz, M.T. Garay, J.M. Laza, J.L. Vilas, E. Papon, J. Rodríguez-Hernández, PH responsive surfaces with nanoscale topography. J. Polym. Sci. A Polym. Chem. 48(14), 2982–2990 (2010)CrossRefGoogle Scholar
  84. 84.
    E. Bormashenko, S. Balter, R. Pogreb, Y. Bormashenko, O. Gendelman, D. Aurbach, On the mechanism of patterning in rapidly evaporated polymer solutions: Is temperature-gradient-driven Marangoni instability responsible for the large-scale patterning? J. Colloid Interface Sci. 343(2), 602–607 (2010)CrossRefGoogle Scholar
  85. 85.
    M. Dietzel, S.M. Troian, Mechanism for spontaneous growth of nanopillar arrays in ultrathin films subject to a thermal gradient. J. Appl. Phys. 108(7) (2010)CrossRefGoogle Scholar
  86. 86.
    D.W. Janes, J.M. Katzenstein, K. Shanmuganathan, C.J. Ellison, Directing convection to pattern thin polymer films. J. Polym. Sci. B Polym. Phys. 51(7), 535–545 (2013)CrossRefGoogle Scholar
  87. 87.
    A. Voit, A. Krekhov, W. Enge, L. Kramer, W. Kohler, Thermal patterning of a critical polymer blend. Phys. Rev. Lett. 94(21) (2005)Google Scholar
  88. 88.
    L. Weh, Surface structures in thin polymer layers caused by coupling of diffusion-controlled Marangoni instability and local horizontal temperature gradient. Macromol. Mater. Eng. 290(10), 976–986 (2005)CrossRefGoogle Scholar
  89. 89.
    J. Peng, H.F. Wang, B.Y. Li, Y.C. Han, Pattern formation in a confined polymer film induced by a temperature gradient. Polymer 45(23), 8013–8017 (2004)CrossRefGoogle Scholar
  90. 90.
    M. Nedelcu, M.D. Morariu, S. Harkema, N.E. Voicu, U. Steiner, Pattern formation by temperature-gradient driven film instabilities in laterally confined geometries. Soft Matter 1(1), 62–65 (2005)CrossRefGoogle Scholar
  91. 91.
    T. Nmabu, Y. Yamuachi, T. Kushiro, S. Sakurai, Micro-convection, dissipative structure and pattern formation in polymer blend solutions under temperature gradients. Faraday Discuss. 128, 285–298 (2005)CrossRefGoogle Scholar
  92. 92.
    R. Verma, A. Sharma, I. Banerjee, K. Kargupta, Spinodal instability and pattern formation in thin liquid films confined between two plates. J. Colloid Interface Sci. 296(1), 220–232 (2006)CrossRefGoogle Scholar
  93. 93.
    T.M. Paronyan, E.M. Pigos, G. Chen, A.R. Harutyunyan, Formation of ripples in graphene as a result of interfacial instabilities. ACS Nano 5(12), 9619–9627 (2011)CrossRefGoogle Scholar
  94. 94.
    J. Genzer, J. Groenewold, Soft matter with hard skin: From skin wrinkles to templating and material characterization. Soft Matter 2(4), 310–323 (2006)CrossRefGoogle Scholar
  95. 95.
    B. Li, Y.-P. Cao, X.-Q. Feng, H. Gao, Mechanics of morphological instabilities and surface wrinkling in soft materials: A review. Soft Matter 8(21), 5728–5745 (2012)Google Scholar
  96. 96.
    A. Schweikart, A. Fery, Controlled wrinkling as a novel method for the fabrication of patterned surfaces. Microchim. Acta 165(3–4), 249–263 (2009)CrossRefGoogle Scholar
  97. 97.
    Y. Ebata, A.B. Croll, A.J. Crosby, Wrinkling and strain localizations in polymer thin films. Soft Matter 8(35), 9086–9091 (2012)CrossRefGoogle Scholar
  98. 98.
    C.S. Davis, A.J. Crosby, Wrinkle morphologies with two distinct wavelengths. J. Polym. Sci. B Polym. Phys. 50(17), 1225–1232 (2012)CrossRefGoogle Scholar
  99. 99.
    E.P. Chan, E.J. Smith, R.C. Hayward, A.J. Crosby, Surface wrinkles for smart adhesion. Adv. Mater. 20(4), 711 (2008)CrossRefGoogle Scholar
  100. 100.
    E.P. Chan, A.J. Crosby, Spontaneous formation of stable aligned wrinkling patterns. Soft Matter 2(4), 324–328 (2006)CrossRefGoogle Scholar
  101. 101.
    H.S. Kim, A.J. Crosby, Solvent-responsive surface via wrinkling instability. Adv. Mater. 23(36), 4188 (2011)CrossRefGoogle Scholar
  102. 102.
    C. Harrison, C.M. Stafford, W.H. Zhang, A. Karim, Sinusoidal phase grating created by a tunably buckled surface. Appl. Phys. Lett. 85(18), 4016–4018 (2004)CrossRefGoogle Scholar
  103. 103.
    A. Chiche, C.M. Stafford, J.T. Cabral, Complex micropatterning of periodic structures on elastomeric surfaces. Soft Matter 4(12), 2360–2364 (2008)CrossRefGoogle Scholar
  104. 104.
    J.-H. Lee, H.W. Ro, R. Huang, P. Lemaillet, T.A. Germer, C.L. Soles, C.M. Stafford, Anisotropic, hierarchical surface patterns via surface wrinkling of Nanopatterned polymer films. Nano Lett. 12(11), 5995–5999 (2012)CrossRefGoogle Scholar
  105. 105.
    J.Y. Chung, J.P. Youngblood, C.M. Stafford, Anisotropic wetting on tunable micro-wrinkled surfaces. Soft Matter 3(9), 1163–1169 (2007)CrossRefGoogle Scholar
  106. 106.
    A.M. Turing, The chemical basis of morphogenesis. Philos. Trans. R. Soc. Lond. B Biol. Sci. 237(641), 37–72 (1952)CrossRefGoogle Scholar
  107. 107.
    Q. Ouyang, H.L. Swinney, Transition from a uniform STATE to hexagonal and striped turing patterns. Nature 352(6336), 610–612 (1991)CrossRefGoogle Scholar
  108. 108.
    D. Walgraef, Reaction-diffusion approach to nanostructure formation and texture evolution in adsorbed monoatomic layers. Int. J. Quantum Chem. 98(2), 248–260 (2004)CrossRefGoogle Scholar
  109. 109.
    H. Katsuragi, Diffusion-induced spontaneous pattern formation on gelation surfaces. Europhys. Lett. 73(5), 793–799 (2006)CrossRefGoogle Scholar
  110. 110.
    B. Bozzini, D. Lacitignola, I. Sgura, A reaction-diffusion model of spatial pattern formation in electrodeposition, in Isnd 2007: Proceedings of the 2007 International Symposium on Nonlinear Dynamics, Pts 1–42008, ed. by J. HeGoogle Scholar
  111. 111.
    M. Hernandez-Guerrero, M.H. Stenzel, Honeycomb structured polymer films via breath figures. Polym. Chem. 3(3), 563–577 (2012)CrossRefGoogle Scholar
  112. 112.
    U.H.F. Bunz, Breath figures as a dynamic templating method for polymers and nanomaterials. Adv. Mater. 18(8), 973–989 (2006)CrossRefGoogle Scholar
  113. 113.
    L. Heng, B. Wang, M. Li, Y. Zhang, L. Jiang, Advances in fabrication materials of honeycomb structure films by the breath-figure method. Materials 6(2), 460–482 (2013)CrossRefGoogle Scholar
  114. 114.
    I. Siretanu, J.P. Chapel, C. Drummond, Substrate remote control of polymer film surface mobility. Macromolecules 45(2), 1001–1005 (2012)CrossRefGoogle Scholar
  115. 115.
    T.A.L. Burgo, T.R.D. Ducati, K.R. Francisco, K.J. Clinckspoor, F. Galembeck, S.E. Galembeck, Triboelectricity: Macroscopic charge patterns formed by self-arraying ions on polymer surfaces. Langmuir 28(19), 7407–7416 (2012)CrossRefGoogle Scholar
  116. 116.
    S. Darwich, K. Mougin, L. Vidal, E. Gnecco, H. Haidara, Nanobubble and nanodroplet template growth of particle nanorings versus nanoholes in drying nanofluids and polymer films. Nanoscale 3(3), 1211–1217 (2011)CrossRefGoogle Scholar
  117. 117.
    S. Budday, S. Andres, B. Walter, P. Steinmann, E. Kuhl, Wrinkling instabilities in soft bilayered systems. Philos. Trans. R. Soc. A 375(2093), 20160163 (2017)CrossRefGoogle Scholar
  118. 118.
    H. Burrell, High polymer theory of the wrinkle phenomenon. Ind. Eng. Chem. 46(10), 2233–2237 (1954)CrossRefGoogle Scholar
  119. 119.
    L. Auer, The development of the gas coagulation theory as an example of dry fatty oils. Kolloid-Zeitschrift 40(4), 334–338 (1926)CrossRefGoogle Scholar
  120. 120.
    A. Eibner, O. Merz, H. Munzert, Zur Kenntnis der chinesischen Holzöle, Chemische Umschau auf dem Gebiet der Fette, Oele, Wachse und Harze 31(15–16) 69–82 (1924)CrossRefGoogle Scholar
  121. 121.
    W.W. Bauer, Some developments in controlling China wood oil varnishes. Ind. Eng. Chem. 18, 1249–1251 (1926)CrossRefGoogle Scholar
  122. 122.
    J. Hyman, T. Greenfield, Cause of “crystallization”of Tung oil vehicles. Ind. Eng. Chem. 28, 238–241 (1936)CrossRefGoogle Scholar
  123. 123.
    J. Marcusson, Die Polymerisation fetter Öle. Fünfte Mitteilung. Angew. Chem. 39(15), 476–479 (1926)CrossRefGoogle Scholar
  124. 124.
    H. Dannenberg, J.K. Wagers, T.F. Bradley, Frosting and gas-checking of conjugated drying oils. Ind. Eng. Chem. 42(8), 1594–1599 (1950)CrossRefGoogle Scholar
  125. 125.
    S. Yang, K. Khare, P.C. Lin, Harnessing surface wrinkle patterns in soft matter. Adv. Funct. Mater. 20(16), 2550–2564 (2010)CrossRefGoogle Scholar
  126. 126.
    J. Groenewold, Wrinkling of plates coupled with soft elastic media. Physica A 298(1–2), 32–45 (2001)CrossRefGoogle Scholar
  127. 127.
    E. Cerda, K. Ravi-Chandar, L. Mahadevan, Thin films – Wrinkling of an elastic sheet under tension. Nature 419(6907), 579–580 (2002)CrossRefGoogle Scholar
  128. 128.
    E. Cerda, L. Mahadevan, Geometry and physics of wrinkling. Phys. Rev. Lett. 90(7) (2003)Google Scholar
  129. 129.
    N. Uchida, Orientational order in buckling elastic membranes. Physica D Nonlinear Phenomena 205(1–4), 267–274 (2005)CrossRefGoogle Scholar
  130. 130.
    C.-M. Chen, S. Yang, Wrinkling instabilities in polymer films and their applications. Polym. Int. 61(7), 1041–1047 (2012)CrossRefGoogle Scholar
  131. 131.
    S. McCormick, Materials science – Exploiting wrinkle formation. Science 317(5838), 605–606 (2007)CrossRefGoogle Scholar
  132. 132.
    F. Weiss, S. Cai, Y. Hu, M.K. Kang, R. Huang, Z. Suo, Creases and wrinkles on the surface of a swollen gel. J. Appl. Phys. 114(7) (2013)CrossRefGoogle Scholar
  133. 133.
    S. Cai, D. Chen, Z. Suo, R.C. Hayward, Creasing instability of elastomer films. Soft Matter 8(5), 1301–1304 (2012)CrossRefGoogle Scholar
  134. 134.
    S.S. Velankar, V. Lai, R.A. Vaia, Swelling-induced delamination causes folding of surface-tethered polymer gels. ACS Appl. Mater. Interfaces 4(1), 24–29 (2012)CrossRefGoogle Scholar
  135. 135.
    T. Bahners, L. Prager, S. Kriehn, J.S. Gutmann, Super-hydrophilic surfaces by photo-induced micro-folding. Appl. Surf. Sci. 259, 847–852 (2012)CrossRefGoogle Scholar
  136. 136.
    Y.-P. Cao, B. Li, X.-Q. Feng, Surface wrinkling and folding of core-shell soft cylinders. Soft Matter 8(2), 556–562 (2012)CrossRefGoogle Scholar
  137. 137.
    R. Schubert, T. Scherzer, M. Hinkefuss, B. Marquardt, J. Vogel, M.R. Buchmeiser, VUV-induced micro-folding of acrylate-based coatings. 1. Real-time methods for the determination of the micro-folding kinetics. Surf. Coat. Technol. 203(13), 1844–1849 (2009)CrossRefGoogle Scholar
  138. 138.
    D.P. Holmes, A.J. Crosby, Draping films: A wrinkle to fold Transition. Phys. Rev. Lett. 105(3) (2010)Google Scholar
  139. 139.
    K. Efimenko, J. Finlay, M.E. Callow, J.A. Callow, J. Genzer, Development and testing of hierarchically wrinkled coatings for marine antifouling. ACS Appl. Mater. Interfaces 1(5), 1031–1040 (2009)CrossRefGoogle Scholar
  140. 140.
    H.S. Kim, A.J. Crosby, Solvent-responsive surface via wrinkling instability. Adv. Mater. 23(36), 4188–4192 (2011)CrossRefGoogle Scholar
  141. 141.
    C.M. Stafford, C. Harrison, K.L. Beers, A. Karim, E.J. Amis, M.R. VanLandingham, H.-C. Kim, W. Volksen, R.D. Miller, E.E. Simonyi, A buckling-based metrology for measuring the elastic moduli of polymeric thin films. Nat. Mater. 3(8), 545 (2004)CrossRefGoogle Scholar
  142. 142.
    J.Y. Chung, J.-H. Lee, K.L. Beers, C.M. Stafford, Stiffness, strength, and ductility of nanoscale thin films and membranes: A combined wrinkling–cracking methodology. Nano Lett. 11(8), 3361–3365 (2011)CrossRefGoogle Scholar
  143. 143.
    J.A. Howarter, C.M. Stafford, Instabilities as a measurement tool for soft materials. Soft Matter 6(22), 5661–5666 (2010)CrossRefGoogle Scholar
  144. 144.
    E.P. Chan, A.J. Crosby, Fabricating microlens arrays by surface wrinkling. Adv. Mater. 18(24), 3238–3242 (2006)CrossRefGoogle Scholar
  145. 145.
    P.-C. Lin, S. Yang, Mechanically switchable wetting on wrinkled elastomers with dual-scale roughness. Soft Matter 5(5), 1011–1018 (2009)CrossRefGoogle Scholar
  146. 146.
    T. Ohzono, H. Monobe, Morphological transformation of a liquid micropattern on dynamically tunable microwrinkles. Langmuir 26(9), 6127–6132 (2010)CrossRefGoogle Scholar
  147. 147.
    D.-Y. Khang, H. Jiang, Y. Huang, J.A. Rogers, A stretchable form of single-crystal silicon for high-performance electronics on rubber substrates. Science 311(5758), 208–212 (2006)CrossRefGoogle Scholar
  148. 148.
    D.-H. Kim, J.-H. Ahn, W.M. Choi, H.-S. Kim, T.-H. Kim, J. Song, Y.Y. Huang, Z. Liu, C. Lu, J.A. Rogers, Stretchable and foldable silicon integrated circuits. Science 320(5875), 507–511 (2008)CrossRefGoogle Scholar
  149. 149.
    W.H. Koo, S.M. Jeong, F. Araoka, K. Ishikawa, S. Nishimura, T. Toyooka, H. Takezoe, Light extraction from organic light-emitting diodes enhanced by spontaneously formed buckles. Nat. Photonics 4(4), 222 (2010)CrossRefGoogle Scholar
  150. 150.
    S.G. Lee, D.Y. Lee, H.S. Lim, D.H. Lee, S. Lee, K. Cho, Switchable transparency and wetting of elastomeric smart windows. Adv. Mater. 22(44), 5013–5017 (2010)CrossRefGoogle Scholar
  151. 151.
    E.P. Chan, E.J. Smith, R.C. Hayward, A.J. Crosby, Surface wrinkles for smart adhesion. Adv. Mater. 20(4), 711–716 (2008)CrossRefGoogle Scholar
  152. 152.
    X. Jiang, S. Takayama, X. Qian, E. Ostuni, H. Wu, N. Bowden, P. LeDuc, D.E. Ingber, G.M. Whitesides, Controlling mammalian cell spreading and cytoskeletal arrangement with conveniently fabricated continuous wavy features on poly (dimethylsiloxane). Langmuir 18(8), 3273–3280 (2002)CrossRefGoogle Scholar
  153. 153.
    M.T. Lam, S. Sim, X. Zhu, S. Takayama, The effect of continuous wavy micropatterns on silicone substrates on the alignment of skeletal muscle myoblasts and myotubes. Biomaterials 27(24), 4340–4347 (2006)CrossRefGoogle Scholar
  154. 154.
    K. Efimenko, M. Rackaitis, E. Manias, A. Vaziri, L. Mahadevan, J. Genzer, Nested self-similar wrinkling patterns in skins. Nat. Mater. 4(4), 293 (2005)CrossRefGoogle Scholar
  155. 155.
    Dynamics of surface memory effect in liquid crystal alignment on reconfigurable microwrinkles. Appl. Phys. Lett. 95(1), 014101 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Departamento de Química, Facultad de Ciencias Naturales, Matemáticas y del Medio AmbienteUniversidad Tecnológica MetropolitanaSantiagoChile
  2. 2.Programa Institucional de Fomento a la Investigación, Desarrollo e InnovaciónUniversidad Tecnológica MetropolitanaSan JoaquínChile
  3. 3.Escuela de Ingeniería, Departamento de Ingeniería Estructural y GeotecniaPontificia Universidad Católica de ChileSantiagoChile
  4. 4.Instituto de Ingeniería Biológica y MédicaSantiagoChile
  5. 5.Departamento de Química Macromolecular AplicadaPolymer Functionalization Group, Instituto de Ciencia y Tecnología de Polímeros-Consejo Superior de Investigaciones Científicas (ICTP-CSIC)MadridSpain

Personalised recommendations