Advertisement

Thoracic Malformations: Etiopathogeny, Genetic, and Associated Syndromes

  • Benoit Chaput
  • Alexane Laguerre
  • Jean-Pierre ChavoinEmail author
Chapter

Abstract

Chest malformations are an issue that it is common to be confronted with in plastic and reconstructive surgery. The panel of these malformations is relatively large, and it happens that several thoracic malformations are associated with each other. Also, some chest deformities will be associated with limb deformities, face or deeper tissue and visceral anomalies, and thus integrate into larger syndromes. It is essential to always have in mind when dealing with these patients, the screening and management of these associated malformations.

References

  1. 1.
    Brochhausen C, et al. Pectus excavatum: history, hypotheses and treatment options. Interact Cardiovasc Thorac Surg. 2012;14(6):801–6.CrossRefGoogle Scholar
  2. 2.
    Brown AL, Cook O. Funnel chest (pectus excavatum) in infancy and adult life. Calif Med. 1951;74(3):174–8.PubMedPubMedCentralGoogle Scholar
  3. 3.
    Chin EF. Surgery of funnel chest and congenital sternal prominence. Br J Surg. 1957;44(186):360–76.CrossRefGoogle Scholar
  4. 4.
    Lester CW. The surgical treatment of funnel chest. Ann Surg. 1946;123(6):1003–22.CrossRefGoogle Scholar
  5. 5.
    Creswick HA, et al. Family study of the inheritance of pectus excavatum. J Pediatr Surg. 2006;41(10):1699–703.CrossRefGoogle Scholar
  6. 6.
    Ravitch MM. The operative treatment of pectus excavatum. Ann Surg. Apr. 1949;129(4):429–44.CrossRefGoogle Scholar
  7. 7.
    Schoenwolf GC, Bleyl SB, Brauer PR, Francis-West PH. Larsen’s human embryology. 4th ed. Philadelphia: Churchill Livingstone; 2009. p. 227–8.Google Scholar
  8. 8.
    Standring S. Chest wall and breast. In:Gray’s anatomy. 40th ed. New York: Churchill Livingstone; 2008. p. 915–38.Google Scholar
  9. 9.
    Bauhinus J. Observatio. In: Ioannis Schenckii a Grafenberg, ed. Johannes Observatorium medicarum, rararum, novarum, admirabilium, et montrosarum, liber secundus. Frankfurt: De partibus vitalibus, thorace contentis; 1609. p. 322.Google Scholar
  10. 10.
    Williams C. Congenital malformation of the thorax great depression of the sternum. Trans Path Soc. 1872;24:50.Google Scholar
  11. 11.
    Langer E. Zuckerkandel: Untersuchungen über den mißbildeten Brustkorb des. Herrn JW Wiener med Zeit. 1880;49:515.Google Scholar
  12. 12.
    Brown A. Pectus excavatum (funnel chest). J Thorac Surg. 1939;(9):164–84.Google Scholar
  13. 13.
    Sweet RH. Pectus excavatum: report of two cases successfully operated upon. Ann Surg. 1944;119(6):922–34.CrossRefGoogle Scholar
  14. 14.
    Nakaoka T, Uemura S, Yano T, Nakagawa Y, Tanimoto T, Suehiro S. Does overgrowth of costal cartilage cause pectus excavatum? A study on the lengths of ribs and costal cartilages in asymmetric patients. J Pediatr Surg. 2009;44(7):1333–6.CrossRefGoogle Scholar
  15. 15.
    Nakaoka T, Uemura S, Yoshida T, Tanimoto T, Miyake H. Overgrowth of costal cartilage is not the etiology of pectus excavatum. J Pediatr Surg. 2010;45(10):2015–8.CrossRefGoogle Scholar
  16. 16.
    Geisbe H, Buddecke E, Flach A, Müller G, Stein U. [88. Biochemical, morphological and physical as well as animal experimental studies on the pathogenesis of funnel chest]. Langenbecks Arch Chir. 1967;319:536–41.Google Scholar
  17. 17.
    Rupprecht H, Hümmer HP, Stöss H, Waldherr T. [Pathogenesis of chest wall abnormalities–electron microscopy studies and trace element analysis of rib cartilage]. Z Kinderchir. 1987;42(4):228–9.Google Scholar
  18. 18.
    Feng J, et al. The biomechanical, morphologic, and histochemical properties of the costal cartilages in children with pectus excavatum. J Pediatr Surg. 2001;36(12):1770–6.CrossRefGoogle Scholar
  19. 19.
    Snyder LH, Curtis GM. An inherited ‘hollow CHEST. J Hered. 1934;25(11):445–7.CrossRefGoogle Scholar
  20. 20.
    Stoddard SE. The inheritance of ‘hollow CHEST’. J Hered. 1939;30(4):139–41.CrossRefGoogle Scholar
  21. 21.
    Kotzot D, Schwabegger AH. Etiology of chest wall deformities–a genetic review for the treating physician. J Pediatr Surg. 2009;44(10):2004–11.CrossRefGoogle Scholar
  22. 22.
    Dean C, Etienne D, Hindson D, Matusz P, Tubbs RS, Loukas M. Pectus excavatum (funnel chest): a historical and current prospective. Surg Radiol Anat. 2012;34(7):573–9.CrossRefGoogle Scholar
  23. 23.
    Gurnett CA, et al. Genetic linkage localizes an adolescent idiopathic scoliosis and pectus excavatum gene to chromosome 18 q. Spine (Phila Pa 1976). 2009;34(2):E94–100.CrossRefGoogle Scholar
  24. 24.
    Wu S, et al. Evidence for GAL3ST4 mutation as the potential cause of pectus excavatum. Cell Res. 2012;22(12):1712–5.CrossRefGoogle Scholar
  25. 25.
    Honke K, Taniguchi N. Sulfotransferases and sulfated oligosaccharides. Med Res Rev. 2002;22(6):637–54.CrossRefGoogle Scholar
  26. 26.
    Karner CM, Long F, Solnica-Krezel L, Monk KR, Gray RS. Gpr126/Adgrg6 deletion in cartilage models idiopathic scoliosis and pectus excavatum in mice. Hum Mol Genet. 2015;24(15):4365–73.CrossRefGoogle Scholar
  27. 27.
    Kou I, et al. Genetic variants in GPR126 are associated with adolescent idiopathic scoliosis. Nat Genet. 2013;45(6):676–9.CrossRefGoogle Scholar
  28. 28.
    Hong J-Y, Suh S-W, Park H-J, Kim Y-H, Park J-H, Park S-Y. Correlations of adolescent idiopathic scoliosis and pectus excavatum. J Pediatr Orthop. 2011;31(8):870–4.CrossRefGoogle Scholar
  29. 29.
    De Paepe A, Devereux RB, Dietz HC, Hennekam RC, Pyeritz RE. Revised diagnostic criteria for the Marfan syndrome. Am J Med Genet. 1996;62(4):417–26.CrossRefGoogle Scholar
  30. 30.
    Allanson JE. Noonan syndrome. Am J Med Genet C Semin Med Genet. 2007;145C(3):274–9.CrossRefGoogle Scholar
  31. 31.
    Jabbour A, Zaman S, Ismail T, Prasad S, Mohiaddin R. Profound pectus excavatum in Marfan’s syndrome. Lancet (London, England). 2012;379(9815):557.CrossRefGoogle Scholar
  32. 32.
    Poland A. Deficiency of the pectoral muscles. Guys Hosp Rep. 1841;6:191–3.Google Scholar
  33. 33.
    David TJ. Nature and etiology of the Poland anomaly. N Engl J Med. 1972;287(10):487–9.CrossRefGoogle Scholar
  34. 34.
    Bavinck JN, Weaver DD. Subclavian artery supply disruption sequence: hypothesis of a vascular etiology for Poland, Klippel-Feil, and Möbius anomalies. Am J Med Genet. 1986;23(4):903–18.CrossRefGoogle Scholar
  35. 35.
    Bouvet JP, Leveque D, Bernetieres F, Gros JJ. Vascular origin of Poland syndrome? A comparative rheographic study of the vascularisation of the arms in eight patients. Eur J Pediatr. 1978;128(1):17–26.CrossRefGoogle Scholar
  36. 36.
    Bamforth JS, Fabian C, Machin G, Honore L. Poland anomaly with a limb body wall disruption defect: case report and review. Am J Med Genet. 1992;43(5):780–4.CrossRefGoogle Scholar
  37. 37.
    Sparks DS, Adams BM, Wagels M. Poland’s syndrome: an alternative to the ‘vascular hypothesis’. Surg Radiol Anat. 2015;37(6):701–2.CrossRefGoogle Scholar
  38. 38.
    Vaccari CM, et al. De novo deletion of chromosome 11q12.3 in monozygotic twins affected by Poland syndrome. BMC Med Genet. 2014;15(1):63.CrossRefGoogle Scholar
  39. 39.
    Sierra Santos L, González Rodríguez MP. [Poland syndrome: description of two patients in the same family]. An Pediatr (Barc). 2008;69(1):49–51.Google Scholar
  40. 40.
    Fuhrmann W, Mösseler U, Neuss H. [Clinical and genetic aspects of Poland’s syndrome]. Dtsch Med Wochenschr. 1971;96(25):1076–8.CrossRefGoogle Scholar
  41. 41.
    Tomo I, Vrsanský V. [Contribution to the elucidation of potential teratogenic influences on the development of malformations of the upper extremities (author’s transl)]. Bratisl Lek Listy. 1975;63(5):531–8.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Benoit Chaput
    • 1
  • Alexane Laguerre
    • 1
  • Jean-Pierre Chavoin
    • 1
    Email author
  1. 1.Plastic Surgery DepartmentRangueil Hospital, Toulouse University HospitalToulouseFrance

Personalised recommendations