Advertisement

CBPF: Leveraging Context and Content Information for Better Recommendations

  • Zahra Vahidi FerdousiEmail author
  • Dario Colazzo
  • Elsa Negre
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11323)

Abstract

Recommender systems (RS) help users to find their appropriate items among large volumes of information. Among the different types of RS, context-aware recommender systems aim at personalizing as much as possible the recommendations based on the context situation in which the user is. In this paper we present an approach integrating contextual information into the recommendation process by modeling either item-based or user-based influence of the context on ratings, using the Pearson Correlation Coefficient. The proposed solution aims at taking advantage of content and contextual information in the recommendation process. We evaluate and show effectiveness of our approach on three different contextual datasets and analyze the performances of the variants of our approach based on the characteristics of these datasets, especially the sparsity level of the input data and amount of available information.

Keywords

Context-aware recommender system Contextual information integration Pre-filtering recommender system 

References

  1. 1.
    Adomavicius, G., Sankaranarayanan, R., Sen, S., Tuzhilin, A.: Incorporating contextual information in recommender systems using a multidimensional approach. ACM Trans. Inf. Syst. (TOIS) 23, 103–145 (2005)CrossRefGoogle Scholar
  2. 2.
    Adomavicius, G., Tuzhilin, A.: Context-aware recommender systems. In: Ricci, F., Rokach, L., Shapira, B., Kantor, P.B. (eds.) Recommender Systems Handbook, pp. 217–253. Springer, Boston (2011).  https://doi.org/10.1007/978-0-387-85820-3_7CrossRefzbMATHGoogle Scholar
  3. 3.
    Baltrunas, L., et al.: InCarMusic: context-aware music recommendations in a car. In: Huemer, C., Setzer, T. (eds.) EC-Web 2011. LNBIP, vol. 85, pp. 89–100. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-23014-1_8CrossRefGoogle Scholar
  4. 4.
    Baltrunas, L., Ludwig, B., Ricci, F.: Matrix factorization techniques for context aware recommendation. In: RecSys, pp. 301–304. ACM (2011)Google Scholar
  5. 5.
    Benesty, J., Chen, J., Huang, Y., Cohen, I.: Pearson correlation coefficient. In: Cohen, I., Huang, Y., Chen, J., Benesty, J. (eds.) Noise Reduction in Speech Processing. STSP, vol. 2, pp. 1–4. Springer, Berlin (2009).  https://doi.org/10.1007/978-3-642-00296-0_5CrossRefGoogle Scholar
  6. 6.
    Braunhofer, M., Elahi, M., Ricci, F., Schievenin, T.: Context-aware points of interest suggestion with dynamic weather data management. In: Xiang, Z., Tussyadiah, I. (eds.) Information and Communication Technologies in Tourism 2014, pp. 87–100. Springer, Cham (2013).  https://doi.org/10.1007/978-3-319-03973-2_7CrossRefGoogle Scholar
  7. 7.
    Codina, V., Ricci, F., Ceccaroni, L.: Distributional semantic pre-filtering in context-aware recommender systems. User Model. User-Adap. Inter. 26, 1–32 (2016)CrossRefGoogle Scholar
  8. 8.
    Guo, G., Zhang, J., Sun, Z., Yorke-Smith, N.: LibRec: a Java library for recommender systems. In: UMAP Workshops (2015)Google Scholar
  9. 9.
    Jannach, D., Zanker, M., Felfernig, A., Friedrich, G.: Recommender Systems: An Introduction. Cambridge University Press, Cambridge (2010)CrossRefGoogle Scholar
  10. 10.
    Koren, Y., Bell, R., Volinsky, C.: Matrix factorization techniques for recommender systems. Computer 42(8), 30–37 (2009)CrossRefGoogle Scholar
  11. 11.
    Košir, A., Odic, A., Kunaver, M., Tkalcic, M., Tasic, J.F.: Database for contextual personalization. Elektrotehniški vestnik 78, 270–274 (2011)Google Scholar
  12. 12.
    Ricci, F., Rokach, L., Shapira, B.: Introduction to recommender systems handbook. In: Ricci, F., Rokach, L., Shapira, B., Kantor, P.B. (eds.) Recommender Systems Handbook, pp. 1–35. Springer, Boston (2011).  https://doi.org/10.1007/978-0-387-85820-3_1CrossRefzbMATHGoogle Scholar
  13. 13.
    Su, X., Khoshgoftaar, T.M.: A survey of collaborative filtering techniques. In: Advances in artificial intelligence (2009)CrossRefGoogle Scholar
  14. 14.
    Vahidi Ferdousi, Z., Colazzo, D., Negre, E.: CBPF: leveraging context and content information for better recommendations. arXiv preprint arXiv:1810.00751 (2018)
  15. 15.
    Vahidi Ferdousi, Z., Colazzo, D., Negre, E.: Correlation-based pre-filtering for context-aware recommendation. In: PerCom Workshops (CoMoRea). IEEE (2018)Google Scholar
  16. 16.
    Zheng, Y., Burke, R., Mobasher, B.: Optimal feature selection for context-aware recommendation using differential relaxation. In: ACM RecSys 2012 (2012)Google Scholar
  17. 17.
    Zheng, Y., Mobasher, B., Burke, R.: CARSKIT: a Java-based context-aware recommendation engine. In: Proceedings of the 15th IEEE ICDM Workshops (2015)Google Scholar
  18. 18.
    Zheng, Y., Mobasher, B., Burke, R.: Similarity-based context-aware recommendation. In: Wang, J., et al. (eds.) WISE 2015. LNCS, vol. 9418, pp. 431–447. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-26190-4_29CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Zahra Vahidi Ferdousi
    • 1
    Email author
  • Dario Colazzo
    • 1
  • Elsa Negre
    • 1
  1. 1.Paris-Dauphine University, PSL Research University, CNRS UMR 7243, LAMSADEParisFrance

Personalised recommendations