Anomalous Trajectory Detection Using Recurrent Neural Network

  • Li Song
  • Ruijia Wang
  • Ding Xiao
  • Xiaotian Han
  • Yanan Cai
  • Chuan ShiEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11323)


Anomalous trajectory detection which plays an important role in taxi fraud detection and trajectory data preprocessing is a crucial task in trajectory mining fields. Traditional anomalous trajectory detection methods which utilize density and isolation approaches mainly focus on the differences of a new trajectory and the historical trajectory dataset. Although these methods can capture the particular characteristics of trajectories, they still suffer from the following two disadvantages. (1) These methods cannot capture the sequential information of the trajectory well. (2) These methods only concentrate on the given source and destination which may lead to data sparsity issues. To overcome above shortcomings, we propose a novel method called Anomalous Trajectory Detection using Recurrent Neural Network (ATD-RNN) which characterizes the trajectory by learning the trajectory embedding. The trajectory embedding can capture the sequential information of the trajectory and depict the internal characteristics between anomalous and normal trajectory. To address the potential data sparsity problem, we enlarge the dataset between a source and a destination by taking the relevant trajectories into consideration. Extend experiments on real-world datasets validate the effectiveness of our method.


Anomalous trajectory detection Trajectory embedding Recurrent neural network 



This work is supported in part by the National Natural Science Foundation of China (No. 61772082, 61702296, 61375058), and the Beijing Municipal Natural Science Foundation (4182043).


  1. 1.
    Abadi, M., et al.: TensorFlow: a system for large-scale machine learning. In: OSDI, vol. 16, pp. 265–283 (2016)Google Scholar
  2. 2.
    Bu, Y., Chen, L., Fu, A.W.C., Liu, D.: Efficient anomaly monitoring over moving object trajectory streams. In: Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 159–168. ACM (2009)Google Scholar
  3. 3.
    Cai, Y., Wang, H., Chen, X., Jiang, H.: Trajectory-based anomalous behaviour detection for intelligent traffic surveillance. IET Intell. Transport Syst. 9(8), 810–816 (2015)CrossRefGoogle Scholar
  4. 4.
    Chen, C., et al.: iBOAT: isolation-based online anomalous trajectory detection. IEEE Trans. Intell. Transport. Syst. 14(2), 806–818 (2013)CrossRefGoogle Scholar
  5. 5.
    Chen, T., Guestrin, C.: XGBoost: A scalable tree boosting system. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 785–794. ACM (2016)Google Scholar
  6. 6.
    Gal, Y., Ghahramani, Z.: A theoretically grounded application of dropout in recurrent neural networks. In: Advances in Neural Information Processing Systems, pp. 1019–1027 (2016)Google Scholar
  7. 7.
    Gao, Q., Zhou, F., Zhang, K., Trajcevski, G., Luo, X., Zhang, F.: Identifying human mobility via trajectory embeddings. In: Proceedings of the 26th International Joint Conference on Artificial Intelligence, pp. 1689–1695. AAAI Press (2017)Google Scholar
  8. 8.
    Ge, Y., Xiong, H., Zhou, Z.h., Ozdemir, H., Yu, J., Lee, K.C.: Top-eye: top-k evolving trajectory outlier detection. In: Proceedings of the 19th ACM International Conference on Information and knowledge Management, pp. 1733–1736. ACM (2010)Google Scholar
  9. 9.
    Graves, A., Mohamed, A.R., Hinton, G.: Speech recognition with deep recurrent neural networks. In: 2013 IEEE International Conference on Acoustics, speech and signal processing (ICASSP), pp. 6645–6649. IEEE (2013)Google Scholar
  10. 10.
    Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)
  11. 11.
    Knorr, E.M., Ng, R.T., Tucakov, V.: Distance-based outliers: algorithms and applications. VLDB J. Int. J. Large Data Bases 8(3–4), 237–253 (2000)CrossRefGoogle Scholar
  12. 12.
    Le, Q., Mikolov, T.: Distributed representations of sentences and documents. In: International Conference on Machine Learning, pp. 1188–1196 (2014)Google Scholar
  13. 13.
    Lee, J.G., Han, J., Li, X.: Trajectory outlier detection: a partition-and-detect framework. In: 2008 IEEE 24th International Conference on Data Engineering, 2008 ICDE, pp. 140–149. IEEE (2008)Google Scholar
  14. 14.
    Li, X., Han, J., Kim, S., Gonzalez, H.: ROAM: Rule-and motif-based anomaly detection in massive moving object data sets. In: Proceedings of the 2007 SIAM International Conference on Data Mining, pp. 273–284. SIAM (2007)Google Scholar
  15. 15.
    Luong, M.T., Pham, H., Manning, C.D.: Effective approaches to attention-based neural machine translation. arXiv preprint arXiv:1508.04025 (2015)
  16. 16.
    Maaten, L.V.D., Hinton, G.: Visualizing data using t-SNE. J. Mach. Learn. Res. 9(Nov), 2579–2605 (2008)zbMATHGoogle Scholar
  17. 17.
    Mnih, A., Kavukcuoglu, K.: Learning word embeddings efficiently with noise-contrastive estimation. In: Advances in neural information processing systems, pp. 2265–2273 (2013)Google Scholar
  18. 18.
    Sillito, R.R., Fisher, R.B.: Semi-supervised learning for anomalous trajectory detection. In: BMVC, vol. 1, pp. 1035–1044 (2008)Google Scholar
  19. 19.
    Wu, F., Fu, K., Wang, Y., Xiao, Z., Fu, X.: A spatial-temporal-semantic neural network algorithm for location prediction on moving objects. Algorithms 10(2), 37 (2017)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Wu, H., Sun, W., Zheng, B.: A fast trajectory outlier detection approach via driving behavior modeling. In: Proceedings of the 2017 ACM on Conference on Information and Knowledge Management, pp. 837–846. ACM (2017)Google Scholar
  21. 21.
    Ying, J.J.C., Lee, W.C., Weng, T.C., Tseng, V.S.: Semantic trajectory mining for location prediction. In: Proceedings of the 19th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, pp. 34–43. ACM (2011)Google Scholar
  22. 22.
    Yu, Y., Cao, L., Rundensteiner, E.A., Wang, Q.: Detecting moving object outliers in massive-scale trajectory streams. In: Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 422–431. ACM (2014)Google Scholar
  23. 23.
    Zhang, D., Li, N., Zhou, Z.H., Chen, C., Sun, L., Li, S.: iBAT: detecting anomalous taxi trajectories from GPS traces. In: Proceedings of the 13th International Conference on Ubiquitous Computing, pp. 99–108. ACM (2011)Google Scholar
  24. 24.
    Zhao, W.X., Zhou, N., Sun, A., Wen, J.R., Han, J., Chang, E.Y.: A time-aware trajectory embedding model for next-location recommendation. Knowl. Inf. Syst. 1–21 (2017)Google Scholar
  25. 25.
    Zheng, Y.: Trajectory data mining: an overview. ACM Trans. Intell. Syst. Technol. (TIST) 6(3), 29 (2015)Google Scholar
  26. 26.
    Zhu, J., Jiang, W., Liu, A., Liu, G., Zhao, L.: Time-dependent popular routes based trajectory outlier detection. In: Wang, J., Cellary, W., Wang, D., Wang, H., Chen, S.-C., Li, T., Zhang, Y. (eds.) WISE 2015. LNCS, vol. 9418, pp. 16–30. Springer, Cham (2015). Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Li Song
    • 1
  • Ruijia Wang
    • 1
  • Ding Xiao
    • 1
  • Xiaotian Han
    • 1
  • Yanan Cai
    • 2
  • Chuan Shi
    • 1
    Email author
  1. 1.Beijing University of Posts and TelecommunicationsBeijingChina
  2. 2.Big Data CenterPICC Property and Casualty Company LimitedBeijingChina

Personalised recommendations