Advertisement

Landau-Ginzburg Theories

  • Ilarion V. Melnikov
Chapter
Part of the Lecture Notes in Physics book series (LNP, volume 951)

Abstract

In this chapter we study the simplest large class of (0,2) QFTs: the (0,2) Landau-Ginzburg theories. While they are interesting in their own right, the main goal is to introduce useful notions relevant to general (0,2) theories in the context of these simple examples.

References

  1. 2.
    Adams, A., Basu, A., Sethi, S.: (0,2) duality. Adv. Theor. Math. Phys. 7, 865–950 (2004). http://arxiv.org/abs/hep-th/0309226 MathSciNetCrossRefGoogle Scholar
  2. 3.
    Adams, A., Distler, J., Ernebjerg, M.: Topological heterotic rings. Adv. Theor. Math. Phys. 10, 657–682 (2006). http://arxiv.org/abs/hep-th/0506263 MathSciNetCrossRefGoogle Scholar
  3. 58.
    Beasley, C., Witten, E.: New instanton effects in supersymmetric QCD. J. High Energy Phys. 0501, 056 (2005). http://dx.doi.org/10.1088/1126-6708/2005/01/056; http://arxiv.org/abs/hep-th/0409149 ADSMathSciNetCrossRefGoogle Scholar
  4. 82.
    Bertolini, M., Romo, M.: Aspects of (2,2) and (0,2) hybrid models. http://arxiv.org/abs/1801.04100
  5. 83.
    Bertolini, M., Melnikov, I.V., Plesser, M.R.: Accidents in (0,2) Landau-Ginzburg theories. J. High Energy Phys. 12, 157 (2014). http://dx.doi.org/10.1007/JHEP12(2014)157; http://arxiv.org/abs/1405.4266
  6. 93.
    Borisov, L.A., Kaufmann, R.M.: On CY-LG correspondence for (0,2) toric models. http://arxiv.org/abs/1102.5444
  7. 101.
    Bruns, W., Herzog, J.: Cohen-Macaulay Rings. Cambridge Studies in Advanced Mathematics, vol. 39. Cambridge University Press, Cambridge (1993)Google Scholar
  8. 119.
    Collins, T.C., Xie, D., Yau, S.-T.: K stability and stability of chiral ring. http://arxiv.org/abs/1606.09260
  9. 121.
    Cox, D., Little, J., O’Shea, D.: Using Algebraic Geometry. Graduate Texts in Mathematics. Springer, New York (1998)CrossRefGoogle Scholar
  10. 129.
    Dedushenko, M.: Chiral algebras in Landau-Ginzburg models. http://arxiv.org/abs/1511.04372
  11. 145.
    Distler, J., Kachru, S.: (0,2) Landau-Ginzburg theory. Nucl. Phys. B413, 213–243 (1994). http://arxiv.org/abs/hep-th/9309110 ADSMathSciNetCrossRefGoogle Scholar
  12. 162.
    Eisenbud, D.: Commutative Algebra. Graduate Texts in Mathematics, vol. 150. Springer, New York (1995)CrossRefGoogle Scholar
  13. 167.
    Fre, P., Girardello, L., Lerda, A., Soriani, P.: Topological first order systems with Landau-Ginzburg interactions. Nucl. Phys. B387, 333–372 (1992). http://arxiv.org/abs/hep-th/9204041 ADSMathSciNetCrossRefGoogle Scholar
  14. 210.
    Griffiths, P., Harris, J.: Principles of Algebraic Geometry. Wiley, New York (1978)zbMATHGoogle Scholar
  15. 217.
    Guffin, J., Sharpe, E.: A-twisted heterotic Landau-Ginzburg models. http://arxiv.org/abs/0801.3955
  16. 237.
    Hori, K., Katz, S., Klemm, A., Pandharipande, R., Thomas, R., Vafa, C., Vakil, R., Zaslow, E.: Mirror Symmetry. Clay Mathematics Monographs, vol. 1. American Mathematical Society, Providence (2003). With a preface by VafaGoogle Scholar
  17. 259.
    Kachru, S., Witten, E.: Computing the complete massless spectrum of a Landau- Ginzburg orbifold. Nucl. Phys. B407, 637–666 (1993). http://arxiv.org/abs/hep-th/9307038 ADSMathSciNetCrossRefGoogle Scholar
  18. 266.
    Kawai, T., Mohri, K.: Geometry of (0,2) Landau-Ginzburg orbifolds. Nucl. Phys. B425, 191–216 (1994). http://arxiv.org/abs/hep-th/9402148 ADSMathSciNetzbMATHGoogle Scholar
  19. 274.
    Kreuzer, M., Skarke, H.: On the classification of quasihomogeneous functions. Commun. Math. Phys. 150, 137 (1992). http://dx.doi.org/10.1007/BF02096569; http://arxiv.org/abs/hep-th/9202039 ADSMathSciNetCrossRefGoogle Scholar
  20. 283.
    Lerche, W., Vafa, C., Warner, N.P.: Chiral rings in N=2 superconformal theories. Nucl. Phys. B324, 427 (1989)ADSMathSciNetCrossRefGoogle Scholar
  21. 289.
    Martinec, E.J.: Algebraic geometry and effective lagrangians. Phys. Lett. B217, 431 (1989)ADSMathSciNetCrossRefGoogle Scholar
  22. 294.
    Melnikov, I.V.: (0,2) Landau-Ginzburg models and residues. J. High Energy Phys. 09, 118 (2009). http://arxiv.org/abs/0902.3908 ADSMathSciNetCrossRefGoogle Scholar
  23. 313.
    Mumford, D., Fogarty, J., Kirwan, F.: Geometric Invariant Theory. Ergebnisse der Mathematik und ihrer Grenzgebiete (2) [Results in Mathematics and Related Areas (2)], vol. 34, 3rd edn. Springer, Berlin (1994)Google Scholar
  24. 315.
    Nekrasov, N.A.: Lectures on curved beta-gamma systems, pure spinors, and anomalies. http://arxiv.org/abs/hep-th/0511008
  25. 324.
    Pestun, V., et al.: Localization techniques in quantum field theories. J. Phys. A50(44), 440301 (2017). http://dx.doi.org/10.1088/1751-8121/aa63c1; http://arxiv.org/abs/1608.02952 MathSciNetCrossRefGoogle Scholar
  26. 341.
    Seiberg, N.: Electric - magnetic duality in supersymmetric nonAbelian gauge theories. Nucl. Phys. B435, 129–146 (1995). http://arxiv.org/abs/hep-th/9411149 ADSCrossRefGoogle Scholar
  27. 349.
    Silverstein, E., Witten, E.: Global U(1) R symmetry and conformal invariance of (0,2) models. Phys. Lett. B328, 307–311 (1994). http://arxiv.org/abs/hep-th/9403054 ADSMathSciNetCrossRefGoogle Scholar
  28. 350.
    Silverstein, E., Witten, E.: Criteria for conformal invariance of (0,2) models. Nucl. Phys. B444, 161–190 (1995). http://arxiv.org/abs/hep-th/9503212 ADSMathSciNetCrossRefGoogle Scholar
  29. 354.
    Sturmfels, B.: Solving systems of polynomial equations. In: Regional Conference Series in Mathematics, vol. 97. American Mathematical Society, Providence (2002)Google Scholar
  30. 358.
    Tan, M.-C., Yagi, J.: Chiral algebras of (0,2) sigma models: beyond perturbation theory. Lett. Math. Phys. 84, 257–273 (2008). http://arxiv.org/abs/0801.4782 ADSMathSciNetCrossRefGoogle Scholar
  31. 363.
    The Stacks Project Authors: Stacks project. http://stacks.math.columbia.edu (2018)
  32. 368.
    Tsikh, A., Yger, A.: Residue currents. Complex analysis. J. Math. Sci. (N. Y.) 120(6), 1916–1971 (2004)MathSciNetCrossRefGoogle Scholar
  33. 371.
    Vafa, C.: Topological Landau-Ginzburg models. Mod. Phys. Lett. A6, 337–346 (1991)ADSMathSciNetCrossRefGoogle Scholar
  34. 372.
    Vafa, C., Warner, N.P.: Catastrophes and the classification of conformal theories. Phys. Lett. B218, 51 (1989)ADSMathSciNetCrossRefGoogle Scholar
  35. 385.
    Witten, E.: Topological quantum field theory. Commun. Math. Phys. 117, 353 (1988). http://dx.doi.org/10.1007/BF01223371 ADSMathSciNetCrossRefGoogle Scholar
  36. 386.
    Witten, E.: Topological sigma models. Commun. Math. Phys. 118, 411 (1988)ADSMathSciNetCrossRefGoogle Scholar
  37. 387.
    Witten, E.: Introduction to cohomological field theories. Int. J. Mod. Phys. A6, 2775–2792 (1991)ADSMathSciNetCrossRefGoogle Scholar
  38. 389.
    Witten, E.: On the Landau-Ginzburg description of N=2 minimal models. Int. J. Mod. Phys. A9, 4783–4800 (1994). http://arxiv.org/abs/hep-th/9304026 ADSMathSciNetCrossRefGoogle Scholar
  39. 390.
    Witten, E.: Mirror manifolds and topological field theory. http://arxiv.org/abs/hep-th/9112056
  40. 393.
    Witten, E.: Two-dimensional models with (0,2) supersymmetry: perturbative aspects. http://arxiv.org/abs/hep-th/0504078
  41. 394.
    Yagi, J.: Chiral algebras of (0,2) models. http://arxiv.org/abs/1001.0118

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Ilarion V. Melnikov
    • 1
  1. 1.Department of Physics and AstronomyJames Madison UniversityHarrisonburgUSA

Personalised recommendations