Advertisement

Attribute-Based VLR Group Signature Scheme from Lattices

  • Yanhua Zhang
  • Yong Gan
  • Yifeng Yin
  • Huiwen Jia
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11337)

Abstract

Attribute-based group signatures allow a group member who possesses certain attributes to anonymously sign messages on behalf the group, and an opening authority can reveal the real identity of the signer from a signature in case of any needed. Almost all of the existing schemes work only in the bilinear map setting and are insecure against quantum computers. The only exception is the lattice-based construction put forward by Kuchta et al. (ICISC 2017) that can handle the user enrollment, however, users cannot be revoked. As a flexible and practical revocation approach, verifier-local revocation (VLR) only needs the verifiers to own the up-to-date revocation information. In this work, we provide the first attribute-based VLR group signature from lattices, and thus, the first construction that supports for membership revocation and is quantum-resistant. The signature size of our scheme is linear in terms of the size of the threshold predicate and in the random oracle model, the security can be reduced to the worst-case lattice hardness problem, the approximating shortest independent vector problem (SIVP).

Keywords

Lattice-based cryptography Attribute-based group signature Verifier-local revocation Quantum-resistant 

Notes

Acknowledgments

We thank the anonymous referees for their helpful comments.

References

  1. 1.
    Ajtai, M.: Generating hard instances of lattice problems (Extended Abstract). In: STOC, pp. 99–108. ACM (1996)Google Scholar
  2. 2.
    Ali, S.T., Amberker, B.B.: Dynamic attribute based group signature with attribute anonymity and tracing in the standard model. In: Gierlichs, B., Guilley, S., Mukhopadhyay, D. (eds.) SPACE 2013. LNCS, vol. 8204, pp. 147–171. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-41224-0_11CrossRefzbMATHGoogle Scholar
  3. 3.
    Ali, S.T., Amberker, B.B.: Short attribute-based group signature without random oracles with attribute anonymity. In: Thampi, S.M., Atrey, P.K., Fan, C.-I., Perez, G.M. (eds.) SSCC 2013. CCIS, vol. 377, pp. 223–235. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-40576-1_22CrossRefGoogle Scholar
  4. 4.
    Ali, S.T., Amberker, B.B.: Dynamic attribute-based group signature with verifier-local revocation and backward unlinkability in the standard model. Int. J. Appl. Cryptogr. 3(2), 148–165 (2014)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Alwen, J., Peikert, C.: Generating shorter bases for hard random lattices. Theory Comput. Syst. 48(3), 535–553 (2011)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Bansarkhani, R.E., Kaafarani, A.E.: Post-quantum attribute-based signatures from lattice assumptions.https://eprint.iacr.org/2016/823
  7. 7.
    Boneh, D., Shacham, H.: Group signatures with verifier-local revocation. In: CCS, pp. 168–177. ACM (2004)Google Scholar
  8. 8.
    Chaum, D., van Heyst, E.: Group Signatures. In: Davies, D.W. (ed.) EUROCRYPT 1991. LNCS, vol. 547, pp. 257–265. Springer, Heidelberg (1991).  https://doi.org/10.1007/3-540-46416-6_22CrossRefGoogle Scholar
  9. 9.
    Emura, K., Miyaji, A., Omote, K.: A dynamic attribute-based group signature scheme and its application in an anonymous survey for the collection of attribute statistics. In: ARES, Fukuoka, pp. 1968–1983. IEEE (2009)Google Scholar
  10. 10.
    Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoor for hard lattices and new cryptographic constructions. In: STOC, pp. 197–206. ACM (2008)Google Scholar
  11. 11.
    Kawachi, A., Tanaka, K., Xagawa, K.: Concurrently secure identification schemes based on the worst-case hardness of lattice problems. In: Pieprzyk, J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350, pp. 372–389. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-89255-7_23CrossRefGoogle Scholar
  12. 12.
    Khader, D.: Attribute based group signatures. http://eprint.iacr.org/2007/159
  13. 13.
    Khader, D.: Attribute based group signature with revocation. http://eprint.iacr.org/2007/241
  14. 14.
    Kuchta, V., Sahu, R.A., Sharma, G., Markowitch, O.: On new zero-knowledge arguments for attribute-based group signatures from lattices. In: Kim, H., Kim, D.-C. (eds.) ICISC 2017. LNCS, vol. 10779, pp. 284–309. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-78556-1_16CrossRefGoogle Scholar
  15. 15.
    Kuchta, V., Sharma, G., Sahu, R.A., Markowitch, O.: Generic framework for attribute-based group signature. In: Liu, J.K., Samarati, P. (eds.) ISPEC 2017. LNCS, vol. 10701, pp. 814–834. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-72359-4_51CrossRefGoogle Scholar
  16. 16.
    Libert, B., Ling, S., Mouhartem, F., Nguyen, K., Wang, H.: Signature schemes with efficient protocols and dynamic group signatures from lattice assumptions. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016, Part II. LNCS, vol. 10032, pp. 373–403. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-53890-6_13CrossRefGoogle Scholar
  17. 17.
    Langlois, A., Ling, S., Nguyen, K., Wang, H.: Lattice-based group signature scheme with verifier-local revocation. In: Krawczyk, H. (ed.) PKC 2014. LNCS, vol. 8383, pp. 345–361. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-642-54631-0_20CrossRefGoogle Scholar
  18. 18.
    Libert, B., Ling, S., Nguyen, K., Wang, H.: Zero-knowledge arguments for lattice-based accumulators: logarithmic-size ring signatures and group signatures without trapdoors. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016, Part II. LNCS, vol. 9666, pp. 1–31. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-49896-5_1CrossRefGoogle Scholar
  19. 19.
    Libert, B., Mouhartem, F., Nguyen, K.: A lattice-based group signature scheme with message-dependent opening. In: Manulis, M., Sadeghi, A.-R., Schneider, S. (eds.) ACNS 2016. LNCS, vol. 9696, pp. 137–155. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-39555-5_8CrossRefGoogle Scholar
  20. 20.
    Ling, S., Nguyen, K., Wang, H.: Group signatures from lattices: simpler, tighter, shorter, ring-based. In: Katz, J. (ed.) PKC 2015. LNCS, vol. 9020, pp. 427–449. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-46447-2_19CrossRefGoogle Scholar
  21. 21.
    Ling, S., Nguyen, K., Wang, H., Xu, Y.: Lattice-based group signatures: achieving full dynamicity with ease. In: Gollmann, D., Miyaji, A., Kikuchi, H. (eds.) ACNS 2017. LNCS, vol. 10355, pp. 293–312. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-61204-1_15CrossRefGoogle Scholar
  22. 22.
    Ling, S., Nguyen, K., Wang, H., Xu, Y.: Constant-size group signatures from lattices. In: Abdalla, M., Dahab, R. (eds.) PKC 2018, Part II. LNCS, vol. 10770, pp. 58–88. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-76581-5_3CrossRefGoogle Scholar
  23. 23.
    Micciancio, D., Peikert, C.: Trapdoors for Lattices: simpler, tighter, faster, smaller. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 700–718. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-29011-4_41CrossRefGoogle Scholar
  24. 24.
    Micciancio, D., Peikert, C.: Hardness of SIS and LWE with small parameters. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part I. LNCS, vol. 8042, pp. 21–39. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-40041-4_2CrossRefGoogle Scholar
  25. 25.
    Nguyen, P.Q., Zhang, J., Zhang, Z.: Simpler efficient group signatures from lattices. In: Katz, J. (ed.) PKC 2015. LNCS, vol. 9020, pp. 401–426. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-46447-2_18CrossRefGoogle Scholar
  26. 26.
    Wang, Q.B., Chen, S.Z.: Attribute-based signature for threshold predicates from lattices. Secur. Commun. Netw. 8, 811–821 (2015)CrossRefGoogle Scholar
  27. 27.
    Wang, Q., Chen, S., Ge, A.: A new lattice-based threshold attribute-based signature scheme. In: Lopez, J., Wu, Y. (eds.) ISPEC 2015. LNCS, vol. 9065, pp. 406–420. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-17533-1_28CrossRefGoogle Scholar
  28. 28.
    Zhang, Y.H., Hu, Y.P., Gao, W., et al.: Simpler efficient group signature scheme with verifier-local revocation from lattices. KSII Trans. Internet Inf. Syst. 10(1), 414–430 (2016)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Yanhua Zhang
    • 1
  • Yong Gan
    • 2
  • Yifeng Yin
    • 1
  • Huiwen Jia
    • 3
  1. 1.Zhengzhou University of Light IndustryZhengzhouChina
  2. 2.Zhengzhou Institute of TechnologyZhengzhouChina
  3. 3.Guangzhou UniversityGuangzhouChina

Personalised recommendations