Advertisement

A Reputation Model for Third-Party Service Providers in Fog as a Service

  • Nanxi Chen
  • Xiaobo Xu
  • Xuzhi Miao
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11337)

Abstract

Fog computing, as a mode of distributing computing resources, can process data directly at the network edge so becomes a promising solution towards the Internet of Things (IoT). To support various IoT services, many third-party fog resources providers participate in the service provisioning process, which accelerates the development of Fog as a Service (FaaS). Current solutions assume the existence of a reliable entity to maintain run-time information about such third-party fog resources providers, which is not feasible because of resource constraints at the network edge. To be aware of the dynamic availability of the fog resources, this paper proposes a graph-based decentralized reputation model for service provisioning in fog computing environment. This mechanism includes a verification model between fog nodes and a consensus mechanism for composite transactions in FaaS. This paper evaluates the proposed solution and proves its feasibility through the experimental result.

Keywords

IoT Decentralized reputation model Fog computing Service composition 

Notes

Acknowledgement

This work is supported by the Key Program of the Chinese Academy of Sciences (Grant No. QYZDY-SSW-JSC034) and the Key Project of Science and Technology of Shanghai (Grant No. 16JC1420503).

References

  1. 1.
    Pirbhulal, S., Zhang, H., Me, A.E.: A novel secure IoT-based smart home automation system using a wireless sensor network. Sensors 17(1), 69 (2017)Google Scholar
  2. 2.
    Ming, L. (1999). http://www.dvbcn.com/2018/04/12-161148.html. Accessed 19 April 2018
  3. 3.
    Zheng, Z., Wang, P., Liu, J.: Real-time big data processing framework: challenges and solutions. Appl. Math. Inf. Sci. 9(6), 3169–3190 (2015)Google Scholar
  4. 4.
    Bonomi, F., Milito, R., Natarajan, P., Zhu, J.: Fog computing: a platform for internet of things and analytics. In: Bessis, N., Dobre, C. (eds.) Big Data and Internet of Things: A Roadmap for Smart Environments. SCI, vol. 546, pp. 169–186. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-05029-4_7CrossRefGoogle Scholar
  5. 5.
    Skarlat, O., Nardelli, M., Schulte, S.: Resource provisioning for IoT services in the fog. Serv. Oriented Comput. Appl. 11(4), 427–443 (2016)CrossRefGoogle Scholar
  6. 6.
    Chaudhary, R., Kumar, N., Zeadally, S.: Network service chaining in fog and cloud computing for the 5G environment: data management and security challenges. IEEE Commun. Mag. 55(11), 114–122 (2017)CrossRefGoogle Scholar
  7. 7.
    Ashrafi, T.H., Hossain, M.A., Arefin, S.E., Das, K.D.J., Chakrabarty, A.: Service based FOG computing model for IoT. In: IEEE International Conference on Collaboration and Internet Computing, pp. 163–172. IEEE Computer Society (2017)Google Scholar
  8. 8.
    Minh, Q.T., Nguyen, D.T., An, V.L., Hai, D.N., Truong, A.: Toward service placement on Fog computing landscape. In: Nafosted Conference on Information and Computer Science, pp. 291–296 (2017)Google Scholar
  9. 9.
    Santoro, D., Zozin, D., Pizzolli, D., Pellegrini, F.D., Cretti, S.: Foggy: a platform for workload orchestration in a fog computing environment. IEEE International Conference on Cloud Computing Technology and Science, pp. 231–234. IEEE (2017)Google Scholar
  10. 10.
    Yang, Y.: FA2ST: Fog as a Service Technology. In: IEEE Computer Software and Applications Conference, p. 708. IEEE Computer Society (2017)Google Scholar
  11. 11.
    Chen, N., Clarke, S.: A dynamic service composition model for adaptive systems in mobile computing environments. In: Franch, X., Ghose, Aditya K., Lewis, Grace A., Bhiri, S. (eds.) ICSOC 2014. LNCS, vol. 8831, pp. 93–107. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-662-45391-9_7CrossRefGoogle Scholar
  12. 12.
    Divya, M., Biradar, N.B.: IOTA-next generation block chain. Int. J. Eng. Comput. Sci. 7, 23823–23826 (2018)CrossRefGoogle Scholar
  13. 13.
    Serguei, P.: Tangle. IOTA (2017)Google Scholar
  14. 14.
    Kalasapur, S., Kumar, M., Shirazi, B.A.: Dynamic service composition in pervasive computing. IEEE Trans. Parallel Distrib. Syst. 18, 907–918 (2007)CrossRefGoogle Scholar
  15. 15.
    Tschorsch, F., Scheuermann, B.: Bitcoin and beyond: a technical survey on decentralized digital currencies. IEEE Commun. Surv. Tutor. 18(3), 2084–2123 (2016)CrossRefGoogle Scholar
  16. 16.
    Cao, Z., Zhang, X., Zhang, W.: A context-aware adaptive web service composition framework. In: IEEE International Conference on Computational Intelligence & Communication Technology, pp. 62–66. IEEE (2015)Google Scholar
  17. 17.
    Madkour, M., Ghanami, D.E., Maach, A.: Context-aware service adaptation: an approach based on fuzzy sets and service composition. J. Inf. Sci. Eng. 29(1), 1–16 (2013)Google Scholar
  18. 18.
    Lin, C., Kavi, K.: A QoS-aware BPEL framework for service selection and composition using QoS properties. Int. J. Adv. Softw. 6(1 and 2), 56–68 (2014)Google Scholar
  19. 19.
    Rajeswari, M., Sambasivam, G., Balaji, N.: Original article: appraisal and analysis on various web service composition approaches based on QoS factors. J. King Saud Univ.-Comput. Inf. Sci. 26(1), 143–152 (2014)Google Scholar
  20. 20.
    Wang, Z., Xu, T., Qian, Z.: A parameter-based scheme for service composition in pervasive computing environment. In: Complex, Intelligent and Software Intensive Systems, CISIS 2009 (2009)Google Scholar
  21. 21.
    Chen, N., Yang, Y., Li, J., Zhang, T.: A fog-based service enablement architecture for cross-domain IoT applications. IEEE Fog World Congress (2017)Google Scholar
  22. 22.
    Jamali, M., Ester, M.: A matrix factorization technique with trust propagation for recommendation in social networks. In: ACM Conference on Recommender Systems, pp. 135–142 ACM (2010)Google Scholar
  23. 23.
    Liu, G., Wang, Y., Orgun, M.A., et al.: Finding the optimal social trust path for the selection of trustworthy service providers in complex social networks. IEEE Trans. Serv. Comput. 6(2), 152–167 (2013)CrossRefGoogle Scholar
  24. 24.
    Ziegler, C.N., Lausen, G.: Spreading activation models for trust propagation. In: IEEE International Conference on e-Technology, e-Commerce and e-Service, pp. 83–97. IEEE (2004)Google Scholar
  25. 25.
    Yang, Y., Wu, Y., Chen, N., et al.: LOCASS: local optimal caching algorithm with social selfishness for mixed cooperative and selfish devices. IEEE Access PP(99), 1 (2018)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Shanghai Institute of Microsystem and Information Technology, Chinese Academy of SciencesShanghaiChina
  2. 2.Shanghai Normal UniversityShanghaiChina

Personalised recommendations