Advertisement

Molecular Basis of Pheromonogenesis Regulation in Moths

  • J. Joe HullEmail author
  • Adrien Fónagy
Chapter

Abstract

Sexual communication among the vast majority of moths typically involves the synthesis and release of species-specific, multicomponent blends of sex pheromones (types of insect semiochemicals) by females. These compounds are then interpreted by conspecific males as olfactory cues regarding female reproductive readiness and assist in pinpointing the spatial location of emitting females. Studies by multiple groups using different model systems have shown that most sex pheromones are synthesized de novo from acetyl-CoA by functionally specialized cells that comprise the pheromone gland. Although significant progress was made in identifying pheromone components and elucidating their biosynthetic pathways, it wasn’t until the advent of modern molecular approaches and the increased availability of genetic resources that a more complete understanding of the molecular basis underlying pheromonogenesis was developed. Pheromonogenesis is regulated by a neuropeptide termed Pheromone Biosynthesis Activating Neuropeptide (PBAN) that acts on a G protein-coupled receptor expressed at the surface of pheromone gland cells. Activation of the PBAN receptor (PBANR) triggers a signal transduction cascade that utilizes an influx of extracellular Ca2+ to drive the concerted action of multiple enzymatic steps (i.e. chain-shortening, desaturation, and fatty acyl reduction) that generate the multicomponent pheromone blends specific to each species.

In this chapter, we provide a brief overview of moth sex pheromones before expanding on the molecular mechanisms regulating pheromonogenesis, and conclude by highlighting recent developments in the literature that disrupt/exploit this critical pathway.

Notes

Acknowledgements

We wish to thank Dr. Shogo Matsumoto for both his guidance and support of the Japan Society for the Promotion of Science, which played a pivotal role in our respective careers. We also thank the many members of the former Molecular Entomology Laboratory at the RIKEN Advanced Science Institute and the numerous colleagues and peers who have contributed to advancing our basic understanding of pheromonogenesis regulation. Partial funding for work described herein and during the writing of this chapter was provided by Hungarian Research Fund OTKA K104011 to Adrien Fónagy. Mention of trade names or commercial products in this article is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the U. S. Department of Agriculture. USDA is an equal opportunity provider and employer.

References

  1. Abernathy RL, Nachman RJ, Teal PEA, Yamashita O, Tumlinson JH (1995) Pheromonotropic activity of naturally occurring pyrokinin insect neuropeptides (FXPRLamide) in Helicoverpa zea. Peptides 16:215–219CrossRefPubMedGoogle Scholar
  2. Adams MD, Celniker SE, Holt RA, Evans CA, Gocayne JD, Amanatides PG, Scherer SE, Li PW, Hoskins RA, Galle RF, George RA, Lewis SE, Richards S, Ashburner M, Henderson SN et al (2000) The genome sequence of Drosophila melanogaster. Science 287:2185–21954CrossRefPubMedGoogle Scholar
  3. Albre J, Steinwender B, Newcomb RD (2013) The evolution of desaturase gene regulation involved in sex pheromone production in leafroller moths of the genus Planotortrix. J Hered 104:627–638CrossRefPubMedGoogle Scholar
  4. Altstein M (2001) Insect neuropeptide antagonists. Biopolymers 60:460–473CrossRefPubMedGoogle Scholar
  5. Altstein M (2004a) Role of neuropeptides in sex pheromone production in moths. Peptides 25:1491–1501CrossRefPubMedGoogle Scholar
  6. Altstein M (2004b) Novel insect control agents based on neuropeptide antagonists: the PK/PBAN family as a case study. J Mol Neurosci 22:147–157CrossRefPubMedGoogle Scholar
  7. Altstein M, Nässel DR (2010) Neuropeptide signaling in insects. Adv Exp Med Biol 692:155–165CrossRefPubMedGoogle Scholar
  8. Altstein M, Gazit Y, Aziz OB, Gabay T, Marcus R, Vogel Z, Barg J (1996) Induction of cuticular melanization in Spodoptera littoralis larvae by PBAN/MRCH: development of a quantitative bioassay and structure function analysis. Arch Insect Biochem Physiol 31:355–370CrossRefGoogle Scholar
  9. Altstein M, Ben-Aziz O, Schefler I, Zeltser I, Gilon C (2000) Advances in the application of neuropeptides in insect control. Crop Prot 19:547–555CrossRefGoogle Scholar
  10. Altstein M, Hariton A, Nachman R (2013) FXPRLamide (pyrokinin/PBAN) family. In: Kastin AJ (ed) Handbook of biologically active peptides, 2nd edn. Academic, pp 255–266Google Scholar
  11. Ando T, Inomata SI, Yamamoto M (2004) Lepidopteran sex pheromones. In: Schulz S (ed) The chemistry of pheromones and other semiochemicals I. Springer-Verlag, Berlin/Heidelberg, pp 51–96CrossRefGoogle Scholar
  12. Arakane Y, Li B, Muthukrishnan S, Beeman RW, Kramer KJ, Park Y (2008) Functional analysis of four neuropeptides, EH, ETH, CCAP and bursicon, and their receptors in adult ecdysis behavior of the red flour beetle, Tribolium castaneum. Mech Dev 125:984–995CrossRefPubMedGoogle Scholar
  13. Audsley N, Down RE (2015) G Protein coupled receptors as targets for next generation pesticides. Insect Biochem Mol Biol 67:1–32CrossRefGoogle Scholar
  14. Badisco L, Marchal E, Van Wielendaele P, Verlinden H, Vleugels R, Vanden Broeck J (2011) RNA interference of insulin-related peptide and neuroparsins affects vitellogenesis in the desert locust Schistocerca gregaria. Peptides 32:573–580CrossRefPubMedGoogle Scholar
  15. Bai H, Palli SR (2013) G protein-coupled receptors as target sites for insecticide discovery. In: Ishaaya I, Palli SR, Horowitz R (eds) Advanced technologies for managing insect pests. Springer, Dordrecht, pp 57–82CrossRefGoogle Scholar
  16. Bai H, Zhu F, Shah K, Palli SR (2011) Large-scale RNAi screen of G protein-coupled receptors involved in larval growth, molting and metamorphosis in the red flour beetle. BMC Genomics 12:388CrossRefPubMedPubMedCentralGoogle Scholar
  17. Balakrishnan SS, Basu U, Raghu P (2015) Phosphoinositide signalling in Drosophila. Biochim Biophys Acta 1851:770–784CrossRefPubMedGoogle Scholar
  18. Barak LS, Ménard L, Ferguson SSG, Colapietro A-M, Caron MG (1995) The conserved seven-transmembrane sequence NP(X)2,3Y of the G-protein-coupled receptor superfamily regulates multiple properties of the beta 2-adrenergic receptor. Biochemistry 34:15407–15414CrossRefPubMedGoogle Scholar
  19. Barth RH (1965) Insect mating behavior: endocrine control of a chemical communication system. Science 149:882–883CrossRefPubMedGoogle Scholar
  20. Baum JA, Bogaert T, Clinton W, Heck GR, Feldmann P, Ilagan O, Johnson S, Plaetinck G, Munyikwa T, Pleau M, Vaughn T, Roberts J (2007) Control of coleopteran insect pests through RNA interference. Nat Biotechnol 25:1322–1326CrossRefPubMedGoogle Scholar
  21. Ben-Aziz O, Zeltser I, Altstein M (2005) PBAN selective antagonists: inhibition of PBAN induced cuticular melanization and sex pheromone biosynthesis in moths. J Insect Physiol 51:305–314CrossRefPubMedGoogle Scholar
  22. Berger RS (1966) Isolation, identification, and synthesis of the sex attractant of the cabbage looper, Trichoplusia ni. Ann Entomol Soc Am 59:767–771CrossRefGoogle Scholar
  23. Bhattacharya D, Mishra N, Coutinho EC, Srivastava S, Pissurlenkar RRS, Shaikh M (2015) Conformational study on pheromonotropin neuropeptide using NMR and molecular dynamics. Pharmacol Anal Acta 6:5Google Scholar
  24. Bierl BA, Beroza M, Collier CW (1970) Potent sex attractant of the gypsy moth: its isolation, identification, and synthesis. Science 170:87–89CrossRefPubMedGoogle Scholar
  25. Bilen J, Atallah J, Azanchi R, Levine JD, Riddiford LM (2013) Regulation of onset of female mating and sex pheromone production by juvenile hormone in Drosophila melanogaster. Proc Natl Acad Sci U S A 110:18321–18326CrossRefPubMedPubMedCentralGoogle Scholar
  26. Bjöstad LB, Wolf WA, Roelofs WL (1987) Pheromone biosynthesis in lepidopterans: desaturation and chain shortening. In: Blomquist GJ, Prestwich GD (eds) Pheromone biochemistry. Academic, Orlando, pp 77–120Google Scholar
  27. Bloch G, Hazan E, Rafaeli A (2013) Circadian rhythms and endocrine functions in adult insects. J Insect Physiol 59:56–69CrossRefPubMedGoogle Scholar
  28. Bober R, Rafaeli A (2010) Gene-silencing reveals the functional significance of pheromone biosynthesis activating neuropeptide receptor (PBAN-R) in a male moth. Proc Natl Acad Sci U S A 107:16858–16862CrossRefPubMedPubMedCentralGoogle Scholar
  29. Bober R, Azrielli A, Rafaeli A (2010) Developmental regulation of the pheromone biosynthesis activating neuropeptide-receptor (PBAN-R): re-evaluating the role of juvenile hormone. Insect Mol Biol 19:77–86CrossRefPubMedGoogle Scholar
  30. Bouley R, Sun T-X, Chenard M, McLaughlin M, McKee M, Lin HY, Brown D, Ausiello DA (2003) Functional role of the NPxxY motif in internalization of the type 2 vasopressin receptor in LLC-PK1 cells. Am J Physiol-Cell Physiol 285:C750–C762CrossRefPubMedGoogle Scholar
  31. Brownsey RW, Boone AN, Elliott JE, Kulpa JE, Lee WM (2006) Regulation of acetyl-CoA carboxylase. Biochem Soc Trans 34:223–227CrossRefPubMedGoogle Scholar
  32. Burand JP, Hunter WB (2013) RNAi: future in insect management. J Invertebr Pathol 112:S68–S74CrossRefPubMedGoogle Scholar
  33. Butenandt A, Beckmann R, Stamm D, Hecker E (1959) Über den Sexuallockstoff des Seidenspinners Bombyx mori. Reindarstellung und Konstitution. Z Naturforsch 14b:283–284Google Scholar
  34. Cabrera-Vera TM, Vanhauwe J, Thomas TO, Medkova M, Preininger A, Mazzoni MR, Hamm HE (2003) Insights into G protein structure, function, and regulation. Endocr Rev 24:765–781CrossRefPubMedGoogle Scholar
  35. Chang JC, Ramasamy S (2014) Identification and expression analysis of diapause hormone and pheromone biosynthesis activating neuropeptide (DH-PBAN) in the legume pod borer, Maruca vitrata Fabricius. PLoS One 9:e84916–e84911CrossRefPubMedPubMedCentralGoogle Scholar
  36. Cheng Y, Luo L, Jiang X, Zhang L, Niu C (2010) Expression of pheromone biosynthesis activating neuropeptide and its receptor (PBANR) mRNA in adult female Spodoptera exigua (Lepidoptera: Noctuidae). Arch Insect Biochem Physiol 75:13–27CrossRefPubMedGoogle Scholar
  37. Choi MY, Jurenka RA (2004) PBAN stimulation of pheromone biosynthesis by inducing calcium influx in pheromone glands of Helicoverpa zea. J Insect Physiol 50:555–560CrossRefPubMedGoogle Scholar
  38. Choi MY, Jurenka RA (2006) Role of extracellular Ca2+ and calcium channel activated by a G protein-coupled receptor regulating pheromone production in Helicoverpa zea (Lepidoptera: Noctuidae). Ann Entomol Soc Am 99:905–909CrossRefGoogle Scholar
  39. Choi MY, Jurenka RA (2010) Site-directed mutagenesis and PBAN activation of the Helicoverpa zea PBAN-receptor. FEBS Lett 584:1212–1216CrossRefPubMedGoogle Scholar
  40. Choi MY, Vander Meer RK (2012) Ant trail pheromone biosynthesis is triggered by a neuropeptide hormone. PLoS One 7:e50400CrossRefPubMedPubMedCentralGoogle Scholar
  41. Choi MY, Fuerst E-J, Rafaeli A, Jurenka RA (2003) Identification of a G protein-coupled receptor for pheromone biosynthesis activating neuropeptide from pheromone glands of the moth Helicoverpa zea. Proc Natl Acad Sci U S A 100:9721–9726CrossRefPubMedPubMedCentralGoogle Scholar
  42. Choi MY, Fuerst E-J, Rafaeli A, Jurenka R (2007) Role of extracellular domains in PBAN/pyrokinin GPCRs from insects using chimera receptors. Insect Biochem Mol Biol 37:296–306CrossRefPubMedGoogle Scholar
  43. Choi MY, Vander Meer RK, Shoemaker D, Valles SM (2011) PBAN gene architecture and expression in the fire ant, Solenopsis invicta. J Insect Physiol 57:161–165CrossRefPubMedGoogle Scholar
  44. Choi MY, Vander Meer RK, Coy M, Scharf ME (2012) Phenotypic impacts of PBAN RNA interference in an ant, Solenopsis invicta, and a moth, Helicoverpa zea. J Insect Physiol 58:1159–1165CrossRefPubMedGoogle Scholar
  45. Choi MY, Sanscrainte ND, Estep AS, Vander Meer RK, Becnel JJ (2015) Identification and expression of a new member of the pyrokinin/pban gene family in the sand fly Phlebotomus papatasi. J Insect Physiol 79:55–62CrossRefPubMedGoogle Scholar
  46. Chow KBS, Sun J, Chu KM, Cheung WT, Cheng CHK, Wise H (2012) The truncated ghrelin receptor polypeptide (GHS-R1b) is localized in the endoplasmic reticulum where it forms heterodimers with ghrelin receptors (GHS-R1a) to attenuate their cell surface expression. Mol Cell Endocrinol 348:247–254CrossRefPubMedGoogle Scholar
  47. Clark B, Prestwich GD (1996) Evidence for a C-terminal turn in PBAN: an NMR and distance geometry study. Int J Pept Protein Res 47:361–368CrossRefPubMedGoogle Scholar
  48. Congreve M, Langmead CJ, Mason JS, Marshall FH (2011) Progress in structure based drug design for G protein-coupled receptors. J Med Chem 54:4283–4311CrossRefPubMedPubMedCentralGoogle Scholar
  49. Cusson M, McNeil JN (1989) Involvement of juvenile hormone in the regulation of pheromone release activities in a moth. Science 243:210–212CrossRefPubMedGoogle Scholar
  50. Cuvillier-Hot V, Lenoir A, Peeters C (2004) Reproductive monopoly enforced by sterile police workers in a queenless ant. Behav Ecol 15:970–975CrossRefGoogle Scholar
  51. Davis MT, Vakharia VN, Henry J, Kempe TG, Raina AK (1992) Molecular cloning of the pheromone biosynthesis-activating neuropeptide in Helicoverpa zea. Proc Natl Acad Sci U S A 89:142–146CrossRefPubMedPubMedCentralGoogle Scholar
  52. de Graaf C, Foata N, Engkvist O, Rognan D (2008) Molecular modeling of the second extracellular loop of G-protein coupled receptors and its implication on structure-based virtual screening. Proteins 71:599–620CrossRefPubMedGoogle Scholar
  53. De Loof A, Schoofs L, Huybrechts R (2016) The endocrine system controlling sexual reproduction in animals: Part of the evolutionary ancient but well conserved immune system? Gen Comp Endocrinol 226:56–71CrossRefPubMedGoogle Scholar
  54. Delisle J, Royer L (1994) Changes in pheromone titer of oblique-banded leafroller, Choristoneura rosaceana, virgin females as a function of time of day, age, and temperature. J Chem Ecol 20:45–69CrossRefPubMedGoogle Scholar
  55. Delisle J, Simard J (2002) Factors involved in the post-copulatory neural inhibition of pheromone production in Choristoneura fumiferana and C. roasaceana females. J Insect Physiol 48:181–188CrossRefPubMedGoogle Scholar
  56. Delisle J, Picimbon JF, Simard J (1999) Physiological control of pheromone production in Choristoneura fumiferana and C. rosaceana. Arch Insect Biochem Physiol 42:253–265CrossRefPubMedGoogle Scholar
  57. Delisle J, Picimbon JF, Simard J (2000) Regulation of pheromone inhibition in mated females of Choristoneura fumiferana and C. rosaceana. J Insect Physiol 46:913–921CrossRefPubMedGoogle Scholar
  58. Ding BJ, Löfstedt C (2015) Analysis of the Agrotis segetum pheromone gland transcriptome in the light of sex pheromone biosynthesis. BMC Genomics 16:1–21CrossRefGoogle Scholar
  59. Drin G, Scarlata S (2007) Stimulation of phospholipase Cbeta by membrane interactions, interdomain movement, and G protein binding – how many ways can you activate an enzyme? Cell Signal 19:1383–1392CrossRefPubMedPubMedCentralGoogle Scholar
  60. Du Y, Feng B, Li H, Liu C, Zeng J, Pan L, Yu Q (2015) Field application of Agrotis ipsilon (Lepidoptera: Noctuidae) pheromone blends and their application to monitoring moth populations in China. Environ Entomol 44:724–733CrossRefPubMedGoogle Scholar
  61. Duan J, Li R, Cheng D, Fan W, Zha X, Cheng T, Wu Y, Wang J, Mita K, Xiang Z, Xia Q (2010) SilkDB v2.0: a platform for silkworm (Bombyx mori) genome biology. Nucleic Acids Res 38:D453–D456CrossRefPubMedGoogle Scholar
  62. Duportets L, Gadenne C, Dufour MC, Couillaud F (1998) The pheromone biosynthesis activating neuropeptide (PBAN) of the black cutworm moth, Agrotis ipsilon: immunohistochemistry, molecular characterization and bioassay of its peptide sequence. Insect Biochem Mol Biol 28:591–599CrossRefPubMedGoogle Scholar
  63. Duvernay MT, Filipeanu CM, Wu G (2005) The regulatory mechanisms of export trafficking of G protein-coupled receptors. Cell Signal 17:1457–1465CrossRefPubMedGoogle Scholar
  64. El-Sayed AM (2014) The pherobase: database of insect pheromones and semiochemicals. http://www.pherobase.com
  65. El-Sayed AM, Suckling DM, Byers JA, Jang EB, Wearing CH (2009) Potential of “lure and kill” in long-term pest management and eradication of invasive species. J Econ Entomol 102:815–835CrossRefPubMedGoogle Scholar
  66. Eltahlawy HS, Buckner JS, Foster SP (2007) Regulation of pheromone biosynthesis in the “Z strain” of the European corn borer, Ostrinia nubilalis. Arch Insect Biochem Physiol 65:29–38CrossRefPubMedGoogle Scholar
  67. Fabriàs G, Jurenka RA, Roelofs WL (1992) Stimulation of sex pheromone production proteinaceous extracts of the bursa copulatrix in the red banded leafroller moth. Arch Insect Biochem Physiol 20:75–86CrossRefGoogle Scholar
  68. Fabriàs G, Marco MP, Camps F (1994) Effect of the pheromone biosynthesis activating neuropeptide on sex pheromone biosynthesis in Spodoptera littoralis isolated glands. Arch Insect Biochem Physiol 27:77–87CrossRefGoogle Scholar
  69. Fabriàs G, Barrot M, Camps F (1995) Control of the sex pheromone biosynthetic pathway in Thaumetopoea pityocampa by the pheromone biosynthesis activating neuropeptide. Insect Biochem Mol Biol 25:655–660Google Scholar
  70. Fan YL, Rafaeli A, Gileadi C, Appelbaum SW (1999) Juvenile hormone induction of pheromone gland PBAN-responsiveness in Helicoverpa armigera females. Insect Biochem Mol Biol 29:635–641CrossRefGoogle Scholar
  71. Fan YL, Rafaeli A, Moshitzky P, Kubli E, Choffat Y, Applebaum SW (2000) Common functional elements of Drosophila melanogaster seminal peptides involved in reproduction of Drosophila melanogaster and Helicoverpa armigera females. Insect Biochem Mol Biol 30:805–812CrossRefPubMedGoogle Scholar
  72. Fang N, Teal PEA, Tumlinson JH (1995) PBAN regulation of pheromone biosynthesis in female tobacco hornworm moths, Manduca sexta (L.). Arch Insect Biochem Physiol 29:35–44CrossRefGoogle Scholar
  73. Farrell SL, Andow DA (2017) Highly variable male courtship behavioral sequences in a crambid moth. J Ethol 35:221–236CrossRefGoogle Scholar
  74. Ferguson S (2001) Evolving concepts in G protein-coupled receptor endocytosis: the role in receptor desensitization and signaling. Pharmacol Rev 53:1–24Google Scholar
  75. Fodor J, Köblös G, Kákai Á, Kárpáti Z, Molnár BP, Dankó T, Bozsik G, Bognár C, Szőcs G, Fónagy A (2017) Molecular cloning, expression and sequence analysis of the pheromone biosynthesis activating neuropeptide (PBAN) gene from the European corn borer, Ostrinia nubilalis. Insect Mol Biol 26:616–632CrossRefPubMedGoogle Scholar
  76. Fodor J, Hull JJ, Köblös G, Jacquin-Joly E, Szlanka T, Fónagy A (2018) Identification and functional characterization of the pheromone biosynthesis activating neuropeptide receptor isoforms from Mamestra brassicae. Gen Comp Endocrinol 258:60–69CrossRefPubMedGoogle Scholar
  77. Fónagy A, Matsumoto S, Schoofs L, De Loof A, Mitsui T (1992a) In vivo and in vitro pheromonotropic activity of two locustatachykinin peptides in Bombyx mori. Biosci Biotechnol Biochem 56:1692–1693CrossRefPubMedGoogle Scholar
  78. Fónagy A, Schoofs L, Matsumoto S, De Loof A, Mitsui T (1992b) Functional cross-reactivities of some locustamyotropins and Bombyx pheromone biosynthesis activating neuropeptide. J Insect Physiol 38:651–657CrossRefGoogle Scholar
  79. Fónagy A, Matsumoto S, Uchiumi K, Orikasa C, Mitsui T (1992c) Action of pheromone biosynthesis activating neuropeptide on pheromone glands of Bombyx mori and Spodoptera litura. J Pestic Sci 17:47–54CrossRefGoogle Scholar
  80. Fónagy A, Matsumoto S, Uchiumi K, Mitsui T (1992d) Role of calcium ion and cyclic nucleotides in pheromone production in Bombyx mori. J Pest Sci 17:115–121CrossRefGoogle Scholar
  81. Fónagy A, Yokoyama N, Ozawa R, Okano K, Tatsuki S, Maeda S, Matsumoto S (1999) Involvement of calcineurin in the signal transduction of PBAN in the silkworm, Bombyx mori (Lepidoptera). Comp Biochem Physiol B 124:51–60CrossRefPubMedGoogle Scholar
  82. Fónagy A, Yokoyama N, Okano K, Tatsuki S, Maeda S, Matsumoto S (2000) Pheromone-producing cells in the silkmoth, Bombyx mori: identification and their morphological changes in response to pheromonotropic stimuli. J Insect Physiol 46:735–744CrossRefPubMedGoogle Scholar
  83. Fónagy A, Moto K, Ohnishi A, Kurihara M, Kis J, Matsumoto S (2011) Studies of sex pheromone production under neuroendocrine control by analytical and morphological means in the oriental armyworm, Pseudaletia separata, Walker (Lepidoptera: Noctuidae). Gen Comp Endocrinol 172:62–76CrossRefPubMedGoogle Scholar
  84. Foster SP (2000) Periodicity of sex pheromone biosynthesis, release and degradation in the lightbrown apple moth, Epiphyas postvittana (Walker). Arch Insect Biochem Physiol 43:125–136CrossRefPubMedGoogle Scholar
  85. Fujii T, Suzuki MG, Kawai T, Tzuneizumi K, Ohnishi A, Kurihara M, Matsumoto S, Ando T (2007) Determination of the pheromone-producing region that has epoxidation activity in the abdominal tip of the Japanese giant looper, Ascotis selenaria cretacea (Lepidoptera: Geometridae). J Insect Physiol 53:312–318CrossRefPubMedGoogle Scholar
  86. Fujii T, Nakano R, Takubo Y, Qian S, Yamakawa R, Ando T, Ishikawa Y (2010) Female sex pheromone of a lichen moth Eilema japonica (Arctiidae, Lithosiinae): components and control of production. J Insect Physiol 56:1986–1991CrossRefPubMedGoogle Scholar
  87. Gadenne C, Picimbon JF, Bécard JM, Lalanne-Cassou B, Renou M (1997) Development and pheromone communication systems in hybrids of Agrotis ipsilon and Agrotis segetum (Lepidoptera: Noctuidae). J Chem Ecol 23:191–209Google Scholar
  88. Gemeno C, Haynes KF (1998) Chemical and behavioral evidence for a third pheromone component in a North American population of the black cutworm moth, Agrotis ipsilon. J Chem Ecol 24:999–1011CrossRefGoogle Scholar
  89. Gemeno C, Haynes KF (2000) Periodical and age-related variation in chemical communication system of black cutworm moth, Agrotis ipsilon. J Chem Ecol 26:329–342CrossRefGoogle Scholar
  90. Gemeno C, Lutfallah AF, Haynes KF (2000) Pheromone blend variation and cross-attraction among populations of the black cutworm moth (Lepidoptera: Noctuidae). Ann Entomol Soc Am 93:1322–1328CrossRefGoogle Scholar
  91. Gether U (2000) Uncovering molecular mechanisms involved in activation of G protein-coupled receptors. Endocr Rev 21:90–113CrossRefPubMedGoogle Scholar
  92. Gether U, Asmar F, Meinild AK, Rasmussen SGF (2002) Structural basis for activation of G-protein-coupled receptors. Pharmacol Toxicol 91:304–312CrossRefPubMedGoogle Scholar
  93. Grimmelikhuijzen CJ, Hauser F (2013) Arthropod genomics and pest management targeting GPCRs. In: Ishaaya I, Palli SR, Horowitz R (eds) Advanced technologies for managing insect pests: an overview. Springer, Dordrecht, pp 165–177CrossRefGoogle Scholar
  94. Gripentrog JM, Jesaitis AJ, Miettinen HM (2000) A single amino acid substitution (N297A) in the conserved NPXXY sequence of the human N-formyl peptide receptor results in inhibition of desensitization and endocytosis, and a dose-dependent shift in p42/44 mitogen-activated protein kinase activation and chemotaxis. Biochem J 352:399–407CrossRefPubMedPubMedCentralGoogle Scholar
  95. Haberer W, Steiger S, Müller JK (2010) (E)-methylgeranate, a chemical signal of juvenile hormone titre and its role in the partner recognition system of burying beetles. Anim Behav 79:17–24CrossRefGoogle Scholar
  96. Halls ML, Cooper DMF (2011) Regulation by Ca2+-signaling pathways of adenylyl cyclases. Cold Spring Harb Perspect Biol 3:a004143–a004143CrossRefPubMedPubMedCentralGoogle Scholar
  97. Hanin O, Azrielli A, Applebaum SW, Rafaeli A (2012) Functional impact of silencing the Helicoverpa armigera sex-peptide receptor on female reproductive behaviour. Insect Mol Biol 21:161–167CrossRefPubMedGoogle Scholar
  98. Hariton-Shalev A, Shalev M, Adir N, Belausov E, Altstein M (2013) Structural and functional differences between pheromonotropic and melanotropic PK/PBAN receptors. Biochim Biophys Acta 1830:5036–5048CrossRefPubMedGoogle Scholar
  99. He R, Browning DD, Ye RD (2001) Differential roles of the NPXXY motif in formyl peptide receptor signaling. J Immunol 166:4099–4105CrossRefPubMedGoogle Scholar
  100. Hewes RS, Taghert PH (2001) Neuropeptides and neuropeptide receptors in the Drosophila melanogaster genome. Genome Res 11:1126–1142CrossRefPubMedPubMedCentralGoogle Scholar
  101. Hillier NK, Vickers NJ (2004) The role of heliothine hairpencil compounds in female Heliothis virescens (Lepidoptera: Noctuidae) behavior and mate acceptance. Chem Senses 29:499–511CrossRefPubMedGoogle Scholar
  102. Hillier NK, Kleineidam C, Vickers NJ (2006) Physiology and glomerular projections of olfactory receptor neurons on the antenna of female Heliothis virescens (Lepidoptera: Noctuidae) responsive to behaviorally relevant odors. J Comp Physiol A 192:199–219CrossRefGoogle Scholar
  103. Holman L (2012) Costs and constraints conspire to produce honest signaling: insights from an ant queen pheromone. Evolution 66:2094–2105CrossRefPubMedGoogle Scholar
  104. Holman GM, Cook BJ, Nachman RJ (1986) Primary structure and synthesis of a blocked myotropic neuropeptide isolated from the cockroach, Leucophaea maderae. Comp Biochem Physiol C Comp Pharmacol 85:219–224CrossRefGoogle Scholar
  105. Holst B, Nygaard R, Valentin-Hansen L, Bach A, Engelstoft MS, Petersen PS, Frimurer TM, Schwartz TW (2010) A conserved aromatic lock for the tryptophan rotameric switch in TM-VI of seven-transmembrane receptors. J Biol Chem 285:3973–3985CrossRefPubMedGoogle Scholar
  106. Homma T, Watanabe K, Tsurumaru S, Kataoka H, Imai K, Kamba M, Niimi T, Yamashita O, Yaginuma T (2006) G protein-coupled receptor for diapause hormone, an inducer of Bombyx embryonic diapause. Biochem Biophys Res Commun 344:386–393Google Scholar
  107. Hong B, Zhang ZF, Tang SM, Yi YZ, Zhang TY, Xu WH (2006) Protein-DNA interactions in the promoter region of the gene encoding diapause hormone and pheromone biosynthesis activating neuropeptide of the cotton bollworm, Helicoverpa armigera. Biochim Biophys Acta 1759:177–185CrossRefPubMedGoogle Scholar
  108. Huang Y, Xu S, Tang X, Zhao Z, Du J (1997) Male orientation inhibitor of cotton bollworm: inhibitory effects of alcohols in wind-tunnel and in the field. Insect Sci 4:173–181CrossRefGoogle Scholar
  109. Hull JJ, Ohnishi A, Moto K, Kawasaki Y, Kurata R, Suzuki MG, Matsumoto S (2004) Cloning and characterization of the pheromone biosynthesis activating neuropeptide receptor from the silkmoth, Bombyx mori. Significance of the carboxyl terminus in receptor internalization. J Biol Chem 279:51500–51507CrossRefPubMedGoogle Scholar
  110. Hull JJ, Ohnishi A, Matsumoto S (2005) Regulatory mechanisms underlying pheromone biosynthesis activating neuropeptide (PBAN)-induced internalization of the Bombyx mori PBAN receptor. Biochem Biophys Res Commun 334:69–78CrossRefPubMedGoogle Scholar
  111. Hull JJ, Kajigaya R, Imai K, Matsumoto S (2007a) Sex pheromone production in the silkworm, Bombyx mori, is mediated by store-operated Ca(2+) channels. Biosci Biotechnol Biochem 71:1993–2001CrossRefPubMedGoogle Scholar
  112. Hull JJ, Kajigaya R, Imai K, Matsumoto S (2007b) The Bombyx mori sex pheromone biosynthetic pathway is not mediated by cAMP. J Insect Physiol 53:782–793CrossRefPubMedGoogle Scholar
  113. Hull JJ, Lee JM, Kajigaya R, Matsumoto S (2009) Bombyx mori homologs of STIM1 and Orai1 are essential components of the signal transduction cascade that regulates sex pheromone production. J Biol Chem 284:31200–31213CrossRefPubMedPubMedCentralGoogle Scholar
  114. Hull JJ, Lee JM, Matsumoto S (2010) Gqα-linked phospholipase Cβ1 and phospholipase Cγ are essential components of the pheromone biosynthesis activating neuropeptide (PBAN) signal transduction cascade. Insect Mol Biol 19:553–566PubMedGoogle Scholar
  115. Hull JJ, Lee JM, Matsumoto S (2011) Identification of specific sites in the third intracellular loop and carboxyl terminus of the Bombyx mori pheromone biosynthesis activating neuropeptide receptor crucial for ligand-induced internalization. Insect Mol Biol 20:801–811CrossRefPubMedGoogle Scholar
  116. Hunt RE, Haynes KF (1990) Periodicity in the quantity and blend ratios of pheromone components in glands and volatile emissions of mutant and normal cabbage looper moths, Trichoplusia ni. J Insect Physiol 36:769–774CrossRefGoogle Scholar
  117. Hunyady L, Bor M, Baukal AJ, Balla T, Catt KJ (1995) A conserved NPLFY sequence contributes to agonist binding and signal transduction but is not an internalization signal for the type 1 angiotensin II receptor. J Biol Chem 270:16602–16609CrossRefPubMedGoogle Scholar
  118. Ichikawa T (1998) Activity patterns of neurosecretory cells releasing pheromonotropic neuropeptides in the moth I. Proc Natl Acad Sci U S A 95:4055–4060CrossRefPubMedPubMedCentralGoogle Scholar
  119. Iglesias F, Marco MP, Jacquin-Joly E, Camps F, Fabriàs G (1998) Regulation of sex pheromone biosynthesis in two noctuid species, S. littoralis and M. brassicae, may involve both PBAN and the ventral nerve cord. Arch Insect Biochem Physiol 37:295–304Google Scholar
  120. Iglesias F, Marco P, François MC, Camps F, Fabriàs G, Jacquin-Joly E (2002) A new member of the PBAN family in Spodoptera littoralis: molecular cloning and immunovisualisation in scotophase hemolymph. Insect Biochem Mol Biol 32:901–908CrossRefPubMedGoogle Scholar
  121. Imai K, Konno T, Nakazawa Y, Komiya T, Isobe M, Koga K, Goto T, Yaginuma T, Sakakibara K, Hasegawa K, Yamashita O (1991) Isolation and structure of diapause hormone of the silkworm, Bombyx mori. Proc Jpn Acad Ser B: Phys Biol Sci 67:98–101CrossRefGoogle Scholar
  122. Iwanaga M, Dohmae N, Fónagy A, Takio K, Kawasaki H, Maeda S, Matsumoto S (1998) Isolation and characterization of calmodulin in the pheromone gland of the silkworm, Bombyx mori. Comp Biochem Physiol B Biochem Mol Biol 120:761–767CrossRefPubMedGoogle Scholar
  123. Jacquin E, Jurenka RA, Ljungberg H, Nagnan P, Löfstedt C, Descoins C, Roelofs WL (1994) Control of sex pheromone biosynthesis in the moth Mamestra brassicae by the pheromone biosynthesis activating neuropeptide. Insect Biochem Mol Biol 24:203–211CrossRefGoogle Scholar
  124. Jiang H, Wei Z, Nachman RJ, Park Y (2014) Molecular cloning and functional characterization of the diapause hormone receptor in the corn earworm Helicoverpa zea. Peptides 53:243–249CrossRefPubMedGoogle Scholar
  125. Jing TZ, Wang ZY, Qi FH, Liu KY (2007) Molecular characterization of diapause hormone and pheromone biosynthesis activating neuropeptide from the black-back prominent moth, Clostera anastomosis (L.) (Lepidoptera, Notodontidae). Insect Biochem Mol Biol 37:1262–1271CrossRefPubMedGoogle Scholar
  126. Johnson KF, Chan W, Kornfeld S (1990) Cation-dependent mannose 6-phosphate receptor contains two internalization signals in its cytoplasmic domain. Proc Natl Acad Sci U S A 87:10010–10014CrossRefPubMedPubMedCentralGoogle Scholar
  127. Jurenka RA (1996) Signal transduction in the stimulation of sex pheromone biosynthesis in moths. Arch Insect Biochem Physiol 33:245–258CrossRefGoogle Scholar
  128. Jurenka RA (2003) Biochemistry of female moth sex pheromones. In: Blomquist GJ, Vogt RG (eds) Insect pheromone biochemistry and molecular biology-The biosynthesis and detection of pheromones and plant volatiles. Elsevier Academic Press, SanDiego/London, pp 53–80CrossRefGoogle Scholar
  129. Jurenka RA (2004) Insect pheromone biosynthesis. In: Schulz S (ed) The chemistry of pheromones and other semiochemicals I. Springer-Verlag, Berlin, pp 97–132CrossRefGoogle Scholar
  130. Jurenka RA (2015) The PRXamide neuropeptide signalling system: conserved in animals. In: Advances in insect physiology. Academic, San Diego, pp 123–170Google Scholar
  131. Jurenka RA, Nusawardani T (2011) The pyrokinin/ pheromone biosynthesis-activating neuropeptide (PBAN) family of peptides and their receptors in Insecta: evolutionary trace indicates potential receptor ligand-binding domains. Insect Mol Biol 20:323–334CrossRefPubMedGoogle Scholar
  132. Jurenka RA, Rafaeli A (2011) Regulatory role of PBAN in sex pheromone biosynthesis of heliothine moths. Front Endocrinol (Lausanne) 2:46CrossRefGoogle Scholar
  133. Jurenka RA, Jacquin E, Roelofs WL (1991a) Stimulation of pheromone biosynthesis in the moth Helicoverpa zea: action of a brain hormone on pheromone glands involves Ca2+ and cAMP as second messengers. Proc Natl Acad Sci U S A 88:8621–8625CrossRefPubMedPubMedCentralGoogle Scholar
  134. Jurenka RA, Jacquin E, Roelofs WL (1991b) Control of the pheromone biosynthetic pathway in Helicoverpa zea by the pheromone biosynthesis activating neuropeptide. Arch Insect Biochem Physiol 17:81–91CrossRefGoogle Scholar
  135. Jurenka RA, Fabriàs G, DeVoe L, Roelofs WL (1994) Action of PBAN and related peptides on pheromone biosynthesis in isolated pheromone glands of the redbanded leafroller moth, Argyrotaenia velutinana. Comp Biochem Physiol Pharmacol Toxicol Endocrinol 108:153–160Google Scholar
  136. Kamimura M, Tatsuki S (1994) Effects of photoperiodic changes on calling behavior and pheromone production in the Oriental tobacco budworm moth, Helicoverpa assulta (Lepidoptera: Noctuidae). J Insect Physiol 40:731–734CrossRefGoogle Scholar
  137. Kawai T, Ohnishi A, Suzuki MG, Fujii T, Matsuoka K, Kato I, Matsumoto S, Ando T (2007) Identification of a unique pheromonotropic neuropeptide including double FXPRL motifs from a geometrid species, Ascotis selenaria cretacea, which produces an epoxyalkenyl sex pheromone. Insect Biochem Mol Biol 37:330–337CrossRefPubMedGoogle Scholar
  138. Kawai T, Lee JM, Nagata K, Matsumoto S, Tanokura M, Nagasawa H (2012) The arginine residue within the C-terminal active core of Bombyx mori pheromone biosynthesis-activating neuropeptide is essential for receptor binding and activation. Front Endocrinol (Lausanne) 3:42CrossRefPubMedCentralGoogle Scholar
  139. Kawai T, Katayama Y, Guo L, Liu D, Suzuki T, Hayakawa LJM, Nagamine T, Hull JJ, Matsumoto S, Nagasawa H, Tanokura M, Nagata K (2014) Identification of functionally important residues of the silkmoth pheromone biosynthesis-activating neuropeptide receptor, an insect ortholog of the vertebrate neuromedin U receptor. J Biol Chem 289:19150–19163CrossRefPubMedGoogle Scholar
  140. Kawano T, Kataoka H, Nagasawa H, Isogai A (1992) cDNA cloning and sequence determination of the pheromone biosynthesis activating neuropeptide of the silkworm, Bombyx mori. Biochem Biophys Res Commun 189:221–226CrossRefPubMedGoogle Scholar
  141. Kehat M, Dunkelblum E (1990) Behavioral responses of male Heliothis armigera (Lepidoptera: Noctuidae) moths in a flight tunnel to combinations of components identified from female sex pheromone glands. J Insect Behav 3:75–83CrossRefGoogle Scholar
  142. Kelstrup HC, Hartfelder K, Nascimento FS, Riddiford LM (2014) The role of juvenile hormone in dominance behavior, reproduction and cuticular pheromone signaling in the caste-flexible epiponine wasp, Synoeca surinama. Front Zool 11:78CrossRefPubMedPubMedCentralGoogle Scholar
  143. Kim YJ, Nachman R, Aimanova K, Gill S, Adams ME (2008) The pheromone biosynthesis activating neuropeptide (PBAN) receptor of Heliothis virescens: identification, functional expression, and structure-activity relationships of ligand analogs. Peptides 29:268–275CrossRefPubMedGoogle Scholar
  144. Kitamura A, Nagasawa H, Kataoka H, Inoue T, Matsumoto S, Ando T, Suzuki A (1989) Amino acid sequence of pheromone-biosynthesis-activating neuropeptide (PBAN) of the silkworm, Bombyx mori. Biochem Biophys Res Commun 163:520–526CrossRefPubMedGoogle Scholar
  145. Kitamura A, Nagasawa H, Kataoka H, Ando T, Suzuki A (1990) Amino acid sequence of pheromone biosynthesis activating neuropeptide-II (PBAN-II) of the silkmoth, Bombyx mori. Agric Biol Chem 54:2495–2497PubMedGoogle Scholar
  146. Kleinau G, Jaeschke H, Worth CL, Mueller S, Gonzalez J, Paschke R, Krause G (2010) Principles and determinants of G-protein coupling by the rhodopsin-like thyrotropin receptor. PLoS One 5:e9745CrossRefPubMedPubMedCentralGoogle Scholar
  147. Köblös G, Dankó T, Sipos K, Geiger A, Szlanka T, Fodor J, Fónagy A (2015) The regulation of Δ11-desaturase gene expression in the pheromone gland of Mamestra brassicae (Lepidoptera; Noctuidae) during pheromonogenesis. Gen Comp Endocrinol 221:217–227CrossRefPubMedGoogle Scholar
  148. Kristiansen K (2004) Molecular mechanisms of ligand binding, signaling, and regulation within the superfamily of G-protein-coupled receptors: molecular modeling and mutagenesis approaches to receptor structure and function. Pharmacol Ther 103:21–80CrossRefPubMedGoogle Scholar
  149. Kuniyoshi H, Kitamura A, Nagasawa H, Chuman T, Shimazaki K, Ando T, Suzuki A (1991) Structure-activity relationship of pheromone biosynthesis activating neuropeptide (PBAN) from the silkmoth, Bombyx mori. In: Suzuki A (ed) Peptide chemistry. Protein Research Foundation, Osaka, pp 251–254Google Scholar
  150. Kuniyoshi H, Nagasawa H, Ando T, Suzuki A, Nachman RJ, Holman GM (1992) Cross-activity between pheromone biosynthesis activating neuropeptide (PBAN) and myotropic pyrokinin insect peptides. Biosci Biotechnol Biochem 56:167–168CrossRefPubMedGoogle Scholar
  151. Lacinova L (2005) Voltage-dependent calcium channels. Gen Physiol Biophys 24:1–78PubMedGoogle Scholar
  152. Lassance JM, Groot AT, Liénard MA, Antony B, Borgwardt C, Andersson F, Hedenström E, Heckel DG, Löfstedt C (2010) Allelic variation in a fatty-acyl reductase gene causes divergence in moth sex pheromones. Nature 466:486–489CrossRefPubMedGoogle Scholar
  153. Lee DW, Kim Y (2011) RNA interference of PBAN receptor suppresses expression of two fatty acid desaturases in female Plutella xylostella. J Asia-Pac Entomol 14:405–410CrossRefGoogle Scholar
  154. Lee DW, Shrestha S, Kim AY, Park SJ, Yang CY, Kim Y, Koh YH (2011) RNA interference of pheromone biosynthesis-activating neuropeptide receptor suppresses mating behavior by inhibiting sex pheromone production in Plutella xylostella (L.). Insect Biochem Mol Biol 41:236–243CrossRefPubMedGoogle Scholar
  155. Lee JM, Hull JJ, Kawai T, Goto C, Kurihara M, Tanokura M, Nagata K, Nagasawa H, Matsumoto S (2012a) Re-evaluation of the PBAN receptor molecule: characterization of PBANR variants expressed in the pheromone glands of moths. Front Endocrinol (Lausanne) 3:6PubMedCentralGoogle Scholar
  156. Lee JM, Hull JJ, Kawai T, Tzuneizumi K, Kurihara M, Tanokura M, Nagata K, Nagasawa H, Matsumoto S (2012b) Establishment of Sf9 transformants constitutively expressing PBAN receptor variants: application to functional evaluation. Front Endocrinol (Lausanne) 3:56PubMedCentralGoogle Scholar
  157. López JJ, Albarran L, Gómez LJ, Smani T, Salido G, Rosado JA (2016) Molecular modulators of store-operated calcium entry. Biochim Biophys Acta 1863:2037–2043CrossRefPubMedGoogle Scholar
  158. Lu Q, Huang LY, Chen P, Yu JF, Xu J, Deng JY, Ye H (2015) Identification and RNA interference of the pheromone biosynthesis activating neuropeptide (PBAN) in the common cutworm moth Spodoptera litura (Lepidoptera: Noctuidae). J Econ Entomol 108:1344–1353CrossRefPubMedGoogle Scholar
  159. Ma PWK, Roelofs WL (1995) Calcium involvement in the stimulation of sex pheromone production by PBAN in the European corn borer, Ostrinia nubilalis (Lepidoptera: Pyralidae). Insect Biochem Mol Biol 25:467–473CrossRefGoogle Scholar
  160. Ma PWK, Knipple DC, Roelofs WL (1994) Structural organization of the Helicoverpa zea gene encoding the precursor protein for pheromone biosynthesis-activating neuropeptide and other neuropeptides. Proc Natl Acad Sci U S A 91:6506–6510CrossRefPubMedPubMedCentralGoogle Scholar
  161. Ma PWK, Garden RW, Niermann JT, O’Connor M, Sweedler JV, Roelofs WL (2000) Characterizing the Hez-PBAN gene products in neuronal clusters with immunocytochemistry and MALDI MS. J Insect Physiol 46:221–230CrossRefPubMedGoogle Scholar
  162. Mao YB, Cai WJ, Wang JW, Hong GJ, Tao XY, Wang LJ, Huang YP, Chen XY (2007) Silencing a cotton bollworm P450 monooxygenase gene by plant-mediated RNAi impairs larval tolerance of gossypol. Nat Biotechnol 25:1307–1313CrossRefPubMedGoogle Scholar
  163. Mao YB, Tao XY, Xue XY, Wang LJ, Chen XY (2011) Cotton plants expressing CYP6AE14 double-stranded RNA show enhanced resistance to bollworms. Transgenic Res 20:665–673CrossRefPubMedGoogle Scholar
  164. Marchese A, Paing MM, Temple BRS, Trejo J (2008) G protein-coupled receptor sorting to endosomes and lysosomes. Annu Rev Pharmacol Toxicol 48:601–629CrossRefPubMedPubMedCentralGoogle Scholar
  165. Marco MP, Fabriàs G, Lazaro G, Camps F (1996) Evidence for both humoral and neural regulation of sex pheromone biosynthesis in Spodoptera littoralis. Arch Insect Biochem Physiol 31:157–167Google Scholar
  166. Markovic D, Challiss RAJ (2009) Alternative splicing of G protein-coupled receptors: physiology and pathophysiology. Cell Mol Life Sci 66:3337–3352CrossRefPubMedGoogle Scholar
  167. Mas E, Llòria J, Quero C, Camps F, Fabriàs G (2000) Control of the biosynthetic pathway of Sesamia nonagrioides sex pheromone by the pheromone biosynthesis activating neuropeptide. Insect Biochem Mol Biol 30:455–459CrossRefPubMedGoogle Scholar
  168. Masler EP, Raina AK, Wagner RM, Kochansky JP (1994) Isolation and identification of a pheromonotropic neuropeptide from the brain-suboesophageal ganglion complex of Lymantria dispar: A new member of the PBAN family. Insect Biochem Mol Biol 24:829–836CrossRefPubMedGoogle Scholar
  169. Matsumoto S, Kitamura A, Nagasawa H, Katoaka H, Orikasa C, Mitsui T, Suzuki A (1990) Functional diversity of a neurohormone produced by the suboesophageal ganglion: molecular identity of melanization and reddish coloration hormone and pheromone biosynthesis activating neuropeptide. J Insect Physiol 36:427–432CrossRefGoogle Scholar
  170. Matsumoto S, Yamashita O, Fónagy A (1992) Functional diversity of a pheromonotropic neuropeptide: induction of cuticular melanization and embryonic diapause in lepidopteran insects by Pseudaletia pheromonotropin. J Insect Physiol 38:847–851CrossRefGoogle Scholar
  171. Matsumoto S, Ozawa R, Nagamine T, Kim G-H, Uchiumi K, Shono T, Mitsui T (1995a) Intracellular transduction in the regulation of pheromone biosynthesis of the silkworm, Bombyx mori: suggested involvement of calmodulin and phosphoprotein phosphatase. Biosci Biotechnol Biochem 59:560–562CrossRefPubMedGoogle Scholar
  172. Matsumoto S, Ozawa R, Uchiumi K, Kurihara M, Mitsui T (1995b) Intracellular signal transduction of PBAN action in the common cutworm, Spodoptera litura: effects of pharmacological agents on sex pheromone production in vitro. Insect Biochem Mol Biol 25:1055–1059CrossRefPubMedGoogle Scholar
  173. Matsumoto S, Hull JJ, Ohnishi A, Moto K, Fónagy A (2007) Molecular mechanisms underlying sex pheromone production in the silkmoth, Bombyx mori: characterization of the molecular components involved in bombykol biosynthesis. J Insect Physiol 53:752–759CrossRefPubMedGoogle Scholar
  174. Matsumoto S, Ohnishi A, Lee J, Hull JJ (2010) Unraveling the pheromone biosynthesis activating neuropeptide (PBAN) signal transduction cascade that regulates sex pheromone production in moths. Vitam Horm 83:425–445CrossRefPubMedGoogle Scholar
  175. Mazor M, Dunkelblum E (2005) Circadian rhythms of sexual behavior and pheromone titers of two closely related moth species Autographa gamma and Cornutiplusia circumflexa1. J Chem Ecol 31:2153–2168CrossRefPubMedGoogle Scholar
  176. McArdle CA, Franklin J, Green L, Hislop JN (2002) Signalling, cycling and desensitisation of gonadotrophin-releasing hormone receptors. J Endocrinol 173:1–11CrossRefPubMedGoogle Scholar
  177. McDowell DG, Burns NA, Parkes HC (1998) Localised sequence regions possessing high melting temperatures prevent the amplification of a DNA mimic in competitive PCR. Nucleic Acids Res 26:3340–3347CrossRefPubMedPubMedCentralGoogle Scholar
  178. Meigs TE, Lyakhovich A (2012) G protein alpha 12. In: Choi S (ed) Encyclopedia of signaling molecules. Springer, New York, pp 689–698Google Scholar
  179. Minneman KP (2001) Splice variants of G protein-coupled receptors. Mol Interv 1:108–116PubMedGoogle Scholar
  180. Mita K, Kasahara M, Sasaki S, Nagayasu Y, Yamada T, Kanamori H, Namiki N, Kitagawa M, Yamashita H, Yasukochi Y, Kadono-Okuda K, Yamamoto K, Ajimura M, Ravikumar G, Shimomura M et al (2004) The genome sequence of silkworm, Bombyx mori. DNA Res 11:27–35CrossRefPubMedGoogle Scholar
  181. Mobarec JC, Sanchez R, Filizola M (2009) Modern homology modeling of G-protein coupled receptors: which structural template to use? J Med Chem 52:5207–5216CrossRefPubMedPubMedCentralGoogle Scholar
  182. Moore CAC, Milano SK, Benovic JL (2007) Regulation of receptor trafficking by GRKs and arrestins. Annu Rev Physiol 69:451–482CrossRefPubMedGoogle Scholar
  183. Moto K, Yoshiga T, Yamamoto M, Takahashi S, Okano K, Ando T, Nakata T, Matsumoto S (2003) Pheromone gland-specific fatty-acyl reductase of the silkmoth, Bombyx mori. Proc Natl Acad Sci U S A 100:9156–9161CrossRefPubMedPubMedCentralGoogle Scholar
  184. Nachman RJ, Holman GM, Cook BJ (1986) Active fragments and analogs of the insect neuropeptide leucopyrokinin: structure-function studies. Biochem Biophys Res Commun 137:936–942CrossRefPubMedGoogle Scholar
  185. Nachman RJ, Roberts VA, Dyson HJ, Holman GM, Tainer JA (1991) Active conformation of an insect neuropeptide family. Proc Natl Acad Sci U S A 88:4518–4522CrossRefPubMedPubMedCentralGoogle Scholar
  186. Nachman RJ, Kuniyoshi H, Roberts VA, Holman GM, Suzuki A (1993a) Active conformation of the pyrokinin/PBAN neuropeptide family for pheromone biosynthesis in the silkworm. Biochem Biophys Res Commun 193:661–666CrossRefPubMedGoogle Scholar
  187. Nachman RJ, Holman GM, Schoofs L, Yamashita O (1993b) Silkworm diapause induction activity of myotropic pyrokinin (FXPRLamide) insect neuropeptides. Peptides 14:1043–1048CrossRefPubMedGoogle Scholar
  188. Nachman RJ, Teal PE, Radel PA, Holman GM, Abernathy RL (1996) Potent pheromonotropic/myotropic activity of a carboranyl pseudotetrapeptide analogue of the insect pyrokinin/PBAN neuropeptide family administered via injection or topical application. Peptides 17:747–752CrossRefPubMedGoogle Scholar
  189. Nachman RJ, Ben-Aziz O, Davidovitch M, Zubrzak P, Isaac RE, Strey A, Reyes-Rangel G, Juaristi E, Williams HJ, Altstein M (2009a) Biostable beta-amino acid PK/PBAN analogs: agonist and antagonist properties. Peptides 30:2174–2181CrossRefPubMedGoogle Scholar
  190. Nachman RJ, Teal PEA, Aziz OB, Davidovitch M, Zubrzak P, Altstein M (2009b) An amphiphilic, PK/PBAN analog is a selective pheromonotropic antagonist that penetrates the cuticle of a heliothine insect. Peptides 30:616–621CrossRefPubMedGoogle Scholar
  191. Nachman R, Ben A, Davidovitch M, Kaczmarek K, Zabrocki J, Williams H, Strey A, Altstein M (2010) A novel dihydroimidazoline, trans-Pro mimetic analog is a selective PK/PBAN agonist. Front Biosci (Elite Ed) 2:195CrossRefGoogle Scholar
  192. Nagalakshmi VK, Applebaum SW, Azrielli A, Rafaeli A (2007) Female sex pheromone suppression and the fate of sex-peptide-like peptides in mated moths of Helicoverpa armigera. Arch Insect Biochem Physiol 64:142–155CrossRefPubMedGoogle Scholar
  193. Nagasawa H, Kuniyoshi H, Arima R, Kawano T, Ando T, Suzuki A (1994) Structure and activity of Bombyx PBAN. Arch Insect Biochem Physiol 25:261–270CrossRefPubMedGoogle Scholar
  194. Nusawardani T, Kroemer JA, Choi M-Y, Jurenka RA (2013) Identification and characterization of the pyrokinin/pheromone biosynthesis activating neuropeptide family of G protein-coupled receptors from Ostrinia nubilalis. Insect Mol Biol 22:331–340CrossRefPubMedGoogle Scholar
  195. Nussenzveig DR, Heinflink M, Gershengorn MC (1993) Agonist-stimulated internalization of the thyrotropin-releasing hormone receptor is dependent on two domains in the receptor carboxyl terminus. J Biol Chem 268:2389–2392PubMedGoogle Scholar
  196. Ohnishi A, Hull JJ, Matsumoto S (2006) Targeted disruption of genes in the Bombyx mori sex pheromone biosynthetic pathway. Proc Natl Acad Sci U S A 103:4398–4403CrossRefPubMedPubMedCentralGoogle Scholar
  197. Ohnishi A, Hull JJ, Kaji M, Hashimoto K, Lee JM, Tsuneizumi K, Suzuki T, Dohmae N, Matsumoto S (2011) Hormone signaling linked to silkmoth sex pheromone biosynthesis involves Ca2+/calmodulin-dependent protein kinase II-mediated phosphorylation of the insect PAT family protein Bombyx mori lipid storage droplet protein-1 (BmLsd1). J Biol Chem 286:24101–24112CrossRefPubMedPubMedCentralGoogle Scholar
  198. Ozawa R, Matsumoto S (1996) Intracellular signal transduction of PBAN action in the silkworm, Bombyx mori: involvement of acyl CoA reductase. Insect Biochem Mol Biol 26:259–265CrossRefPubMedGoogle Scholar
  199. Ozawa R, Matsumoto S, Kim GH, Uchiumi K, Kurihara M, Shono T, Mitsui T (1995) Intracellular signal transduction of PBAN action in lepidopteran insects: inhibition of sex pheromone production by compactin, an HMG CoA reductase inhibitor. Regul Pept 57:319–327CrossRefPubMedGoogle Scholar
  200. Paing MM, Temple BRS, Trejo J (2004) A tyrosine-based sorting signal regulates intracellular trafficking of protease-activated receptor-1: multiple regulatory mechanisms for agonist-induced G protein-coupled receptor internalization. J Biol Chem 279:21938–21947CrossRefPubMedGoogle Scholar
  201. Pandey KN (2009) Functional roles of short sequence motifs in the endocytosis of membrane receptors. Front Biosci 14:5339–5360CrossRefGoogle Scholar
  202. Park Y, Kim YJ, Adams ME (2002) Identification of G protein-coupled receptors for Drosophila PRXamide peptides, CCAP, corazonin, and AKH supports a theory of ligand-receptor coevolution. Proc Natl Acad Sci U S A 99:11423–11428CrossRefPubMedPubMedCentralGoogle Scholar
  203. Patterson R, Vanrossum D, Nikolaidis N, Gill DL, Snyder SH (2005) Phospholipase C-γ: diverse roles in receptor-mediated calcium signaling. Trends Biochem Sci 30:688–697CrossRefPubMedGoogle Scholar
  204. Pawson AJ, Katz A, Sun YM, Lopes J, Illing N, Millar RP, Davidson JS (1998) Contrasting internalization kinetics of human and chicken gonadotropin-releasing hormone receptors mediated by C-terminal tail. J Endocrinol 156:R9–R12CrossRefPubMedGoogle Scholar
  205. Peeters MC, van Westen G, Li Q, Ijzerman AP (2011) Importance of the extracellular loops in G protein-coupled receptors for ligand recognition and receptor activation. Trends Pharmacol Sci 32:35–42CrossRefPubMedGoogle Scholar
  206. Picimbon JF (1996) La phéromone du mâle facilite l’acceptation du mâle par la femelle chez la pyrale du maïs (Lep., Pyralidae). CIFCA 96, First Francophone International Congress on animal behavior, June 9–13th, Laval University, Quebec, CanadaGoogle Scholar
  207. Picimbon JF (2017) A new view of genetic mutations. Australas Med J 10:701–715CrossRefGoogle Scholar
  208. Picimbon JF, Bécard JM, Sreng L, Clément JL, Gadenne C (1995) Juvenile hormone stimulates pheromonotropic brain factor release in the female black cutworm, Agrotis ipsilon. J Insect Physiol 41:377–382CrossRefGoogle Scholar
  209. Picimbon JF, Gadenne C, Bécard JM, Clément JL, Sreng L (1997) Sex pheromone of the French black cutworm moth, Agrotis ipsilon (Lepidoptera: Noctuidae): identication and regulation of a multicomponent blend. J Chem Ecol 23:211–230Google Scholar
  210. Pitino M, Coleman AD, Maffei ME, Ridout CJ, Hogenhout SA (2011) Silencing of aphid genes by dsRNA feeding from plants. PLoS One 6:e25709CrossRefPubMedPubMedCentralGoogle Scholar
  211. Prakriya M, Lewis RS (2015) Store-operated calcium channels. Physiol Rev 95:1383–1436CrossRefPubMedPubMedCentralGoogle Scholar
  212. Predel R, Nachman RJ (2006) The FXPRLamide (pyrokinin/PBAN) peptide family. In: Kastin AJ (ed) Handbook of biologically active peptides, 2nd edn. Academic, pp 207–212Google Scholar
  213. Predel R, Nachman RJ, Gäde G (2001) Myostimulatory neuropeptides in cockroaches: structures, distribution, pharmacological activities, and mimetic analogs. J Insect Physiol 47:311–324CrossRefPubMedGoogle Scholar
  214. Price DRG, Gatehouse JA (2008) RNAi-mediated crop protection against insects. Trends Biotechnol 26:393–400CrossRefPubMedGoogle Scholar
  215. Rafaeli A (1994) Pheromonotropic stimulation of moth pheromone gland cultures in vitro. Arch Insect Biochem Physiol 25:287–299CrossRefGoogle Scholar
  216. Rafaeli A (2009) Pheromone biosynthesis activating neuropeptide (PBAN): regulatory role and mode of action. Gen Comp Endocrinol 162:69–78CrossRefPubMedGoogle Scholar
  217. Rafaeli A, Soroker V (1989) Cyclic AMP mediation of the hormonal stimulation of 14C-acetate incorporation by Heliothis armigera pheromone glands in vitro. Mol Cell Endocrinol 65:43–48CrossRefPubMedGoogle Scholar
  218. Rafaeli A, Gileadi C (1996a) Down-regulation of pheromone biosynthesis: cellular mechanisms of pheromonostatic responses. Insect Biochem Mol Biol 26:797–807CrossRefGoogle Scholar
  219. Rafaeli A, Gileadi C (1996b) Multi-signal transduction of moth pheromone biosynthesis-activating neuropeptide (PBAN) and its modulation: involvement of G-proteins? In: Krisch B, Mentlein R (eds) The peptidergic neuron. Birkhäuser-Verlag, Basel, pp 239–244CrossRefGoogle Scholar
  220. Rafaeli A, Gileadi C (1999) Synthesis and biological activity of a photoaffinity-biotinylated pheromone-biosynthesis activating neuropeptide (PBAN) analog. Peptides 20:787–794CrossRefPubMedGoogle Scholar
  221. Rafaeli A, Jurenka RA (2003) PBAN regulation of pheromone biosynthesis in female moths. In: Blomquist GJ, Vogt RG (eds) Insect pheromone biochemistry and molecular biology-the biosynthesis and detection of pheromones and plant volatiles. Elsevier Academic Press, SanDiego/London, pp 107–136CrossRefGoogle Scholar
  222. Rafaeli A, Bober R (2005) The effect of the juvenile hormone analog, fenoxycarb on the PBAN-receptor and pheromone production in adults of the moth Helicoverpa armigera: an “aging” hormone in adult females? J Insect Physiol 51:401–410CrossRefPubMedGoogle Scholar
  223. Rafaeli A, Hirsch J, Soroker V, Kamensky B, Raina AK (1991) Spatial and temporal distribution of pheromone biosynthesis-activating neuropeptide in Helicoverpa (Heliothis) armigera using RIA and in vitro bioassay. Arch Insect Biochem Physiol 18:119–129CrossRefPubMedGoogle Scholar
  224. Rafaeli A, Soroker V, Hirsch J (1993) Influence of photoperiod and age on the competence of pheromone glands and on the distribution of immunoreactive PBAN in Helicoverpa spp. Arch Insect Biochem Physiol 22:169–180CrossRefGoogle Scholar
  225. Rafaeli A, Zakharova T, Lapsker Z, Jurenka RA (2003) The identification of an age- and female-specific putative PBAN membrane-receptor protein in pheromone glands of Helicoverpa armigera: possible up-regulation by Juvenile Hormone. Insect Biochem Mol Biol 33:371–380CrossRefPubMedGoogle Scholar
  226. Rafaeli A, Bober R, Becker L, Choi MY, Fuerst EJ, Jurenka RA (2007) Spatial distribution and differential expression of the PBAN receptor in tissues of adult Helicoverpa spp. (Lepidoptera: Noctuidae). Insect Mol Biol 16:287–293CrossRefPubMedGoogle Scholar
  227. Raina AK, Klun JA (1984) Brain factor control of sex pheromone production in the female corn earworm moth. Science 225:531–533CrossRefPubMedGoogle Scholar
  228. Raina AK, Kempe TG (1990) A pentapeptide of the C-terminal sequence of PBAN with pheromonotropic activity. Insect Biochem 20:849–851CrossRefGoogle Scholar
  229. Raina A, Jaffe H, Kempe T, Keim P, Blacher RW, Fales HM, Riley CT, Klun JA, Ridgway RL, Hayes DK (1989) Identification of a neuropeptide hormone that regulates sex pheromone production in female moths. Science 244:796–798CrossRefPubMedGoogle Scholar
  230. Ramaswamy S, Jurenka R, Linn C (1995) Evidence for the presence of a pheromonotropic factor in hemolymph and regulation of sex pheromone production in Helicoverpa zea. J Insect Physiol 41:501–508CrossRefGoogle Scholar
  231. Redondo PC, Rosado JA (2015) Store-operated calcium entry: unveiling the calcium handling signalplex. Int Rev Cell Mol Biol 316:183–226CrossRefPubMedGoogle Scholar
  232. Riddiford LM, Williams CM (1971) Role of the corpora cardiaca in the behavior of saturniid moths. I. Release of sex pheromone. Biol Bull 140:1–7CrossRefPubMedGoogle Scholar
  233. Roelofs WL, Liu W, Hao G, Jiao H, Rooney AP, Linn CE (2002) Evolution of moth sex pheromones via ancestral genes. Proc Natl Acad Sci U S A 99:13621–13626CrossRefPubMedPubMedCentralGoogle Scholar
  234. Rosén WQ (2002) Endogenous control of circadian rhythms of pheromone production in the turnip moth, Agrotis segetum. Arch Insect Biochem Physiol 50:21–30CrossRefPubMedGoogle Scholar
  235. Royer L, McNeil JN (1992) Evidence for a male sex pheromone in the European corn borer, Ostrinia nubilalis (Hübner) (Lepidoptera: Pyralidae). Can Entomol 124:113–116CrossRefGoogle Scholar
  236. Sabio M, Jones K, Topiol S (2008) Use of the X-ray structure of the beta2-adrenergic receptor for drug discovery. Part 2: identification of active compounds. Bioorg Med Chem Lett 18:5391–5395CrossRefPubMedGoogle Scholar
  237. Sato Y, Oguchi M, Menjo N, Imai K, Saito H, Ikeda M, Isobe M, Yamashita O (1993) Precursor polyprotein for multiple neuropeptides secreted from the suboesophageal ganglion of the silkworm Bombyx mori: characterization of the cDNA encoding the diapause hormone precursor and identification of additional peptides. Proc Natl Acad Sci U S A 90:3251–3255CrossRefPubMedPubMedCentralGoogle Scholar
  238. Schal C, Fan Y, Blomquist GJ (2003) Regulation of pheromone biosynthesis, transport, and emission in cockroaches. In: Blomquist GJ, Vogt RG (eds) Insect pheromone biochemistry and molecular biology-The biosynthesis and detection of pheromones and plant odor volatiles. Elsevier Academic Press, SanDiego/London, pp 283–322CrossRefGoogle Scholar
  239. Scherkenbeck J, Zdobinsky T (2009) Insect neuropeptides: structures, chemical modifications and potential for insect control. Bioorg Med Chem 17:4071–4084CrossRefPubMedGoogle Scholar
  240. Seck T, Pellegrini M, Florea AM, Grignoux V, Baron R, Mierke DF, Horne WC (2005) The delta e13 isoform of the calcitonin receptor forms a six-transmembrane domain receptor with dominant-negative effects on receptor surface expression and signaling. Mol Endocrinol 19:2132–2144CrossRefPubMedPubMedCentralGoogle Scholar
  241. Seybold SJ, Vanderwel D (2003) Biosynthesis and endocrine regulation of pheromone production in the Coleoptera. In: Blomquist GJ, Vogt RG (eds) Insect pheromone biochemistry and molecular biology-The biosynthesis and detection of pheromones and plant odor volatiles. Elsevier Academic Press, SanDiego/London, pp 137–200CrossRefGoogle Scholar
  242. Shalev AH, Altstein M (2015) Pheromonotropic and melanotropic PK/PBAN receptors: differential ligand-receptor interactions. Peptides 63:81–89CrossRefPubMedGoogle Scholar
  243. Shiomi K, Takasu Y, Kunii M, Tsuchiya R, Mukaida M, Kobayashi M, Sezutsu H, Takahama MI, Mizoguchi A (2015) Disruption of diapause induction by TALEN-based gene mutagenesis in relation to a unique neuropeptide signaling pathway in Bombyx. Sci Rep 5:1–10Google Scholar
  244. Slice LW, Wong HC, Sternini C, Grady EF, Bunnett NW, Walsh JH (1994) The conserved NPXnY motif present in the gastrin-releasing peptide receptor is not a general sequestration sequence. J Biol Chem 269:21755–21761PubMedGoogle Scholar
  245. Soroker V, Rafaeli A (1989) In vitro hormonal stimulation of [14C] acetate incorporation by Heliothis armigera pheromone glands. Insect Biochem 19:1–5CrossRefGoogle Scholar
  246. Soroker V, Rafaeli A (1995) Multi-signal transduction of the pheromonotropic response by pheromone gland incubations of Helicoverpa armigera. Insect Biochem Mol Biol 25:1–9CrossRefGoogle Scholar
  247. Stay B, Tobe S (2007) The role of allatostatins in juvenile hormone synthesis in insects and crustaceans. Annu Rev Entomol 52:277–299CrossRefPubMedGoogle Scholar
  248. Stern PS, Yu L, Choi MY, Jurenka RA, Becker L, Rafaeli A (2007) Molecular modeling of the binding of pheromone biosynthesis activating neuropeptide to its receptor. J Insect Physiol 53:803–818CrossRefPubMedGoogle Scholar
  249. Subchev M, Jurenka RA (2001) Sex pheromone levels in pheromone glands and identification of the pheromone and hydrocarbons in the hemolymph of the moth Scoliopteryx libatrix L. (Lepidoptera: Noctuidae). Arch Insect Biochem Physiol 47:35–43CrossRefPubMedGoogle Scholar
  250. Sun JS, Zhang TY, Zhang QR, Xu WH (2003) Effect of the brain and suboesophageal ganglion on pupal development in Helicoverpa armigera through regulation of FXPRLamide neuropeptides. Regul Pept 116:163–171CrossRefPubMedGoogle Scholar
  251. Tang JD, Charlton RE, Jurenka RA, Wolf WA, Phelan PL, Sreng L, Roelofs WL (1989) Regulation of pheromone biosynthesis by a brain hormone in two moth species. Proc Natl Acad Sci U S A 86:1806–1810CrossRefPubMedPubMedCentralGoogle Scholar
  252. Taning CNT, Van Eynde B, Yu N, Ma S, Smagghe G (2017) CRISPR/Cas9 in insects: applications, best practices and biosafety concerns. J Insect Physiol 98:245–257CrossRefPubMedGoogle Scholar
  253. Teal PEA, Nachman RJ (1997) Prolonged pheromonotropic activity of pseudopeptide mimics of insect pyrokinin neuropeptides after topical application or injection into a moth. Regul Pept 72:161–167CrossRefPubMedGoogle Scholar
  254. Teal PEA, Nachman RJ (2002) A brominated-fluorene insect neuropeptide analog exhibits pyrokinin/PBAN-specific toxicity for adult females of the tobacco budworm moth. Peptides 23:801–806CrossRefPubMedGoogle Scholar
  255. Teal PEA, Tumlinson JH (1984) (Z)-11-Hexadecen-1-ol: a behavioral modifying chemical present in the pheromone gland of female Heliothis zea (Lepidoptera: Noctuidae). Can Entomol 116:777–779CrossRefGoogle Scholar
  256. Teal PEA, Davis NT, Meredith JA, Christensen TA, Hildebrand JG (1999) Role of the ventral nerve cord and terminal abdominal ganglion in the regulation of sex pheromone production in the tobacco budworm (Lepidoptera: Noctuidae). Ann Entomol Soc Am 92:891–901CrossRefGoogle Scholar
  257. Terenius O et al (2011) RNA interference in Lepidoptera: an overview of successful and unsuccessful studies and implications for experimental design. J Insect Physiol 57:231–245CrossRefGoogle Scholar
  258. Terhzaz S, Rosay P, Goodwin SF, Veenstra JA (2007) The neuropeptide SIFamide modulates sexual behavior in Drosophila. Biochem Biophys Res Commun 352:305–310CrossRefPubMedGoogle Scholar
  259. Terhzaz S, Teets NM, Cabrero P, Henderson L, Ritchie MG, Nachman RJ, Dow JAT, Denlinger DA, Davies SA (2015) Insect capa neuropeptides impact desiccation and cold tolerance. Proc Natl Acad Sci U S A 112:2882–2887CrossRefPubMedPubMedCentralGoogle Scholar
  260. Thomas WG, Baker KM, Motel TJ, Thekkumkara TJ (1995) Angiotensin II receptor endocytosis involves two distinct regions of the cytoplasmic tail. A role for residues on the hydrophobic face of a putative amphipathic helix. J Biol Chem 270:22153–22159CrossRefPubMedGoogle Scholar
  261. Tillman JA, Seybold SJ, Jurenka RA, Blomquist GJ (1999) Insect pheromones – an overview of biosynthesis and endocrine regulation. Insect Biochem Mol Biol 29:481–514CrossRefPubMedGoogle Scholar
  262. Tsfadia O, Azrielli A, Falach L, Zada A, Roelofs W, Rafaeli A (2008) Pheromone biosynthetic pathways: PBAN-regulated rate-limiting steps and differential expression of desaturase genes in moth species. Insect Biochem Mol Biol 38:552–567CrossRefPubMedGoogle Scholar
  263. Uehara H, Senoh Y, Yoneda K, Kato Y, Shiomi K (2011) An FXPRLamide neuropeptide induces seasonal reproductive polyphenism underlying a life-history tradeoff in the tussock moth. PLoS One 6:e24213CrossRefPubMedPubMedCentralGoogle Scholar
  264. Van Hiel MB, Van Loy T, Poels J, Vandersmissen HP, Verlinden H, Badisco L, Vanden Broeck J (2010) Neuropeptide receptors as possible targets for development of insect pest control agents. Adv Exp Med Biol 692:211–226CrossRefPubMedGoogle Scholar
  265. Van Wielendaele P, Badisco L, Vanden Broeck J (2013) Neuropeptidergic regulation of reproduction in insects. Gen Comp Endocrinol 188:23–34CrossRefPubMedGoogle Scholar
  266. Veenstra JA (2000) Mono- and dibasic proteolytic cleavage sites in insect neuroendocrine peptide precursors. Arch Insect Biochem Physiol 43:49–63CrossRefPubMedGoogle Scholar
  267. Wakamura S, Struble DL, Matsuura H, Sato M, Kegasawa K (1986) Sex pheromone of the black cutworm moth, Agrotis ipsilon Hufnagel (Lepidoptera: Noctuidae): attractant synergist and improved formulation. Appl Entomol Zool 21:299–304CrossRefGoogle Scholar
  268. Wang YS, Kempe TG, Raina AK, Mazzocchi PH (1994) Conformation of a biologically active C-terminal hexapeptide analog of the pheromone biosynthesis activating neuropeptide by NMR spectroscopy. Int J Pept Protein Res 43:277–283CrossRefPubMedGoogle Scholar
  269. Watanabe K, Hull JJ, Niimi T, Imai K, Matsumoto S, Yaginuma T, Kataoka H (2007) FXPRL-amide peptides induce ecdysteroidogenesis through a G-protein coupled receptor expressed in the prothoracic gland of Bombyx mori. Mol Cell Endocrinol 273:51–58CrossRefPubMedGoogle Scholar
  270. Webster RP, Cardé RT (1984) The effects of mating, exogenous juvenile hormone and a juvenile hormone analogue on pheromone titre, calling and oviposition in the omnivorous leafroller moth (Platynota stultana). J Insect Physiol 30:113–118CrossRefGoogle Scholar
  271. Wedell N (2005) Female receptivity in butterflies and moths. J Exp Biol 208:3433–3440CrossRefPubMedGoogle Scholar
  272. Wei W, Yamamoto M, Asato T, Fujii T, Pu G-Q, Ando T (2004) Selectivity and neuroendocrine regulation of the precursor uptake by pheromone glands from hemolymph in geometrid female moths, which secrete epoxyalkenyl sex pheromones. Insect Biochem Mol Biol 34:1215–1224CrossRefPubMedGoogle Scholar
  273. Wicker-Thomas C, Guenachi I, Keita YF (2009) Contribution of oenocytes and pheromones to courtship behaviour in Drosophila. BMC Biochem 10:21CrossRefPubMedPubMedCentralGoogle Scholar
  274. Witzgall P, Stelinski L, Gut L, Thomson D (2008) Codling moth management and chemical ecology. Annu Rev Entomol 53:503–522CrossRefPubMedGoogle Scholar
  275. Witzgall P, Kirsch P, Cork A (2010) Sex pheromones and their impact on pest management. J Chem Ecol 36:80–100CrossRefPubMedGoogle Scholar
  276. Woodhead AP, Stay B, Seidel SL, Khan MA, Tobe SS (1989) Primary structure of four allatostatins: neuropeptide inhibitors of juvenile hormone biosynthesis. Proc Natl Acad Sci U S A 86:5997–6001CrossRefPubMedPubMedCentralGoogle Scholar
  277. Xu WH, Denlinger DL (2003) Molecular characterization of prothoracicotropic hormone and diapause hormone in Heliothis virescens during diapause, and a new role for diapause hormone. Insect Mol Biol 12:509–516CrossRefPubMedGoogle Scholar
  278. Xu WH, Sato Y, Ikeda M, Yamashita O (1995) Molecular characterization of the gene encoding the precursor protein of diapause hormone and pheromone biosynthesis activating neuropeptide (DH-PBAN) of the silkworm, Bombyx mori and its distribution in some insects. Biochim Biophys Acta 1261:83–89CrossRefPubMedGoogle Scholar
  279. Xuan N, Bu X, Liu YY, Yang X, Liu GX, Fan ZX, Bi YP, Yang LQ, Lou QN, Rajashekar B, Leppik G, Kasvandik S, Picimbon JF (2014) Molecular evidence of RNA editing in Bombyx chemosensory protein family. PLoS One 9:e86932CrossRefPubMedPubMedCentralGoogle Scholar
  280. Xuan N, Rajashekar B, Kasvandik S, Picimbon JF (2016) Structural components of chemosensory protein mutations in the silkworm moth, Bombyx mori. Agri Gene 2:53–58CrossRefGoogle Scholar
  281. Yaginuma T, Niimi T (2015) FXPRLamide peptide family. In: Takei Y, Ando H, Tsutsui K (eds) Handbook of hormones: comparative endocrinology for basic and clinical research. Academic, pp 395–402Google Scholar
  282. Yang M, Wang W, Zhong M, Philippi A, Lichtarge O, Sanborn BM (2002) Lysine 270 in the third intracellular domain of the oxytocin receptor is an important determinant for G alpha(q) coupling specificity. Mol Endocrinol 16:814–823PubMedGoogle Scholar
  283. Yin D, Gavi S, Wang HY, Malbon CC (2004) Probing receptor structure/function with chimeric G-protein-coupled receptors. Mol Pharmacol 65:1323–1332CrossRefPubMedGoogle Scholar
  284. Yoshiga T, Yokoyama N, Imai N, Ohnishi A, Moto K, Matsumoto S (2002) cDNA cloning of calcineurin heterosubunits from the pheromone gland of the silkmoth, Bombyx mori. Insect Biochem Mol Biol 32:477–486CrossRefPubMedGoogle Scholar
  285. Zammit VA, Easom RA (1987) Regulation of hepatic HMG-CoA reductase in vivo by reversible phosphorylation. Biochim Biophys Acta 927:223–228CrossRefPubMedGoogle Scholar
  286. Zandawala M, Hamoudi Z, Lange AB, Orchard I (2015) Adipokinetic hormone signalling system in the Chagas disease vector, Rhodnius prolixus. Insect Mol Biol 24:264–276CrossRefPubMedGoogle Scholar
  287. Závodská R, von Wowern G, Löfstedt C, Rosén WQ, Sauman I (2009) The release of a pheromonotropic neuropeptide, PBAN, in the turnip moth Agrotis segetum, exhibits a circadian rhythm. J Insect Physiol 55:435–440CrossRefPubMedGoogle Scholar
  288. Zdárek J, Nachman RJ (1997) Insect neuropeptides of the pyrokinin/PBAN family accelerate pupariation in the fleshfly (Sarcophaga bullata) larvae. Ann N Y Acad Sci 814:67–72CrossRefPubMedGoogle Scholar
  289. Zdárek J, Nachman RJ, Hayes TK (1998) Structure-activity relationships of insect neuropeptides of the pyrokinin/PBAN family and their selective action on pupariation in fleshfly (Neobelleria bullata) larvae. Eur J Entomol 95:9–16Google Scholar
  290. Zdárek J, Myška P, Zemek R, Nachman RJ (2002) Mode of action of an insect neuropeptide leucopyrokinin (LPK) on pupariation in fleshfly (Sarcophaga bullata) larvae (Diptera: Sarcophagidae). J Insect Physiol 48:951–959CrossRefGoogle Scholar
  291. Zdárek J, Verleyen P, Mareš M, Dolečková L, Nachman RJ (2004) Comparison of the effects of pyrokinins and related peptides identified from arthropods on pupariation behaviour in flesh fly (Sarcophaga bullata) larvae (Diptera: Sarcophagidae). J Insect Physiol 50:233–239CrossRefPubMedGoogle Scholar
  292. Zeltser I, Gilon C, Ben-Aziz O, Schefler I, Altstein M (2000) Discovery of a linear lead antagonist to the insect pheromone biosynthesis activating neuropeptide (PBAN). Peptides 21:1457–1465CrossRefPubMedGoogle Scholar
  293. Zhang Q, Piermarini PM, Nachman RJ, Denlinger DL (2014a) Molecular identification and expression analysis of a diapause hormone receptor in the corn earworm, Helicoverpa zea. Peptides 53:250–257CrossRefPubMedGoogle Scholar
  294. Zhang S, Liu X, Zhu B, Yin X, Du M, Song Q, An S (2014b) Identification of differentially expressed genes in the pheromone glands of mated and virgin Bombyx mori by digital gene expression profiling. PLoS One 9:e111003CrossRefPubMedPubMedCentralGoogle Scholar
  295. Zhang TY, Kang L, Zhang ZF, Xu WH (2004a) Identification of a POU factor involved in regulating the neuron-specific expression of the gene encoding diapause hormone and pheromone biosynthesis-activating neuropeptide in Bombyx mori. Biochem J 380:255–263CrossRefPubMedPubMedCentralGoogle Scholar
  296. Zhang TY, Sun JS, Zhang LB, Shen JL, Xu WH (2004b) Cloning and expression of the cDNA encoding the FXPRL family of peptides and a functional analysis of their effect on breaking pupal diapause in Helicoverpa armigera. J Insect Physiol 50:25–33CrossRefPubMedGoogle Scholar
  297. Zhang TY, Sun JS, Zhang QR, Xu J, Jiang RJ, Xu WH (2004c) The diapause hormone-pheromone biosynthesis activating neuropeptide gene of Helicoverpa armigera encodes multiple peptides that break, rather than induce, diapause. J Insect Physiol 50:547–554CrossRefPubMedGoogle Scholar
  298. Zhang TY, Sun JS, Liu WY, Kang L, Shen JL, Xu WH (2005) Structural characterization and transcriptional regulation of the gene encoding diapause hormone and pheromone biosynthesis activating neuropeptide in the cotton bollworm, Helicoverpa armigera. Biochim Biophys Acta 1728:44–52CrossRefPubMedGoogle Scholar
  299. Zhao CH, Li Q (1996) Control of sex pheromone biosynthetic pathway by PBAN in asian corn borer Ostrinia furnacalis. Insect Sci 3:354–367CrossRefGoogle Scholar
  300. Zhao CH, Li Q, Gao W (2002) Stimulation of sex pheromone production by PBAN-like substance in the pine caterpillar moth, Dendrolimus punctatus (Lepidoptera: Lasiocampidae). Arch Insect Biochem Physiol 49:137–148CrossRefPubMedGoogle Scholar
  301. Zhao JY, Xu WH, Kang L (2004) Functional analysis of the SGNP I in the pupal diapause of the oriental tobacco budworm, Helicoverpa assulta (Lepidoptera: Noctuidae). Regul Pept 118:25–31CrossRefPubMedGoogle Scholar
  302. Zheng L, Lytle C, Njauw CN, Altstein M, Martins-Green M (2007) Cloning and characterization of the pheromone biosynthesis activating neuropeptide receptor gene in Spodoptera littoralis larvae. Gene 393:20–30CrossRefPubMedGoogle Scholar
  303. Zhou XF, Coll M, Appelbaum SA (2000) Effect of temperature and photoperiod on juvenile hormone biosynthesis and sexual maturation in the cotton bollworm, Helicoverpa armigera: implications for life history traits. Insect Biochem Mol Biol 30:863–868CrossRefPubMedGoogle Scholar
  304. Zmijewski MA, Slominski AT (2009) CRF1 receptor splicing in epidermal keratinocytes: potential biological role and environmental regulations. J Cell Physiol 218:593–602CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.USDA-ARS, US Arid Land Agricultural Research CenterMaricopaUSA
  2. 2.Plant Protection InstituteCentre for Agricultural Research of Hungarian Academy of SciencesBudapestHungary

Personalised recommendations