The Spread of Mosquito-Borne Diseases: A Major and Global Public Health Problem

  • Anubis Vega RúaEmail author
  • Bernard A. Okech


Despite centuries of control efforts, the past three decades have witnessed a dramatic spread of many mosquito-borne diseases worldwide. The acceleration of urbanization, global warming, the intensification of intercontinental trade and travel, the co-evolution and adaptation between pathogens and mosquito vectors, and the development of insecticide resistance, have greatly contributed to the mosquito borne diseases worldwide. This chapter presents the current situation regarding the expansion of mosquito-borne diseases and theirs vectors worldwide, highlighting the factors that have contributed to these dramatic expansions. Furthermore, this chapter addresses the main difficulties encountered for vector control implementation using traditional approaches.


  1. Adhami J, Reiter P (1998) Introduction and establishment of Aedes (Stegomyia) albopictus Skuse (Diptera: Culicidae) in Albania. J Am Mosq Control Assoc 14:340–343PubMedGoogle Scholar
  2. Alimi T, Fuller DO, Qualls WA, Herrera SV, Arevalo-Herrera M, Quinones ML, Lacerda MV, Beier JC (2015) Predicting potential ranges of primary Malaria vectors and Malaria in Northern South America based on projected changes in climate, land cover and human population. Parasit Vectors 8:431CrossRefPubMedPubMedCentralGoogle Scholar
  3. Aliota MT, Peinado SA, Velez ID, Osorio JE (2016a) The wMel strain of Wolbachia reduces transmission of Zika virus by Aedes aegypti. Sci Rep 6:1–7CrossRefGoogle Scholar
  4. Aliota MT, Walker EC, Uribe Yepes A, Dario Velez I, Christensen BM, Osorio JE (2016b) The wMel sStrain of Wolbachia reduces transmission of Chikungunya virus in Aedes aegypti. PLoS Negl Trop Dis 10:1–13Google Scholar
  5. Anderson JR, Rico-Hesse R (2006) Aedes aegypti vectorial capacity is determined by the infecting genotype of Dengue virus. Am J Trop Med Hyg 75:886–892CrossRefPubMedPubMedCentralGoogle Scholar
  6. Appassakij H, Khuntikij P, Kemapunmanus M, Wutthanarungsan R, Silpapojakul K (2013) Viremic profiles in asymptomatic and symptomatic Chikungunya fever: a blood transfusion threat? Transfusion 53:2567–2574CrossRefPubMedGoogle Scholar
  7. Aranda C, Eritja R, Roiz D (2006) First record and establishment of the mosquito Aedes albopictus in Spain. Med Vet Entomol 20:150–152CrossRefPubMedGoogle Scholar
  8. Atkinson MP, Su Z, Alphey N, Alphey LS, Coleman PG, Wein LM (2007) Analyzing the control of mosquito-borne diseases by a dominant lethal genetic system. Proc Natl Acad Sci 104:9540–9545CrossRefPubMedGoogle Scholar
  9. Barker-Hudson P, Jones R, Kay BH (1988) Categorization of domestic breeding habitats of Aedes aegypti (Diptera: Culicidae) in Northern Queensland. Aust J Med Entomol 25:178–182CrossRefGoogle Scholar
  10. Beard CB, Durvasula RV, Richards FF (1998) Bacterial symbiosis in arthropods and the control of disease transmission. Emerg Infect Dis 4:581–591CrossRefPubMedPubMedCentralGoogle Scholar
  11. Benedict MQ, Levine RS, Hawley WA, Lounibos LP (2007) Spread of the tiger: global risk of invasion by the mosquito Aedes albopictus. Vector Borne Zoonotic Dis 7:76–85CrossRefPubMedPubMedCentralGoogle Scholar
  12. Bhatt S, Gething PW, Brady OJ, Messina JP, Farlow AW, Moyes CL, Drake JM, Brownstein JS, Hoen AG, Sankoh O, Myers MF, George DB, Jaenisch T, Wint GRW, Simmons CP, Scott TW, Farrar JJ, Hay SI (2013) The global distribution and burden of Dengue. Nature 496:504–507CrossRefPubMedPubMedCentralGoogle Scholar
  13. Bisset JA, Rodríguez MM, Ricardo Y, Ranson H, Pérez O, Moya M, Vázquez A (2011) Temephos resistance and esterase activity in the mosquito Aedes aegypti in Havana, Cuba increased dramatically between 2006 and 2008. Med Vet Entomol 25:233–239CrossRefPubMedGoogle Scholar
  14. Bonizzoni M, Gasperi G, Chen X, James AA (2013) The invasive mosquito species Aedes albopictus: current knowledge and future perspectives. Trends Parasitol 29:460–468CrossRefPubMedPubMedCentralGoogle Scholar
  15. Bracco JE, Capurro ML, Lourenço-de-oliveira R, Mureb Sallum MA (2007) Genetic variability of Aedes aegypti in the Americas using a mitochondrial gene: evidence of multiple introductions. Mem Inst Oswaldo Cruz 102:573–580CrossRefPubMedGoogle Scholar
  16. Braks MAH, Honório NA, Lounibos LP, Lourenço-De-Oliveira R, Juliano SA (2004) Interspecific competition between two invasive species of container mosquitoes, Aedes aegypti and Aedes albopictus (Diptera: Culicidae), in Brazil. Ann Entomol Soc Am 97:130–139CrossRefGoogle Scholar
  17. Brathwaite O, San Martín J, Montoya R, Betzana Zambrano J, Dayan G (2012) Review: the history of Dengue outbreaks in the Americas. Am J Trop Med Hyg 87:584–593CrossRefGoogle Scholar
  18. Brighton SW, Prozesky OW, de la Harpe AL (1983) Chikungunya virus infection. A retrospective study of 107 cases. S Afr Med J 63:313–315PubMedGoogle Scholar
  19. Broche RG, Borja EM (1999) Aedes albopictus in Cuba. J Am Mosq Control Assoc 15:569–570PubMedGoogle Scholar
  20. Brown JE, Evans BR, Zheng W, Obas V, Barrera-Martinez L, Egizi A, Zhao H, Caccone A, Powell JR (2013) Human impacts have shaped historical and recent evolution in Aedes aegypti, the dengue and yellow fever mosquito. Evolution 68:514–525CrossRefPubMedPubMedCentralGoogle Scholar
  21. Caminade C, Medlock JM, Ducheyne E, McIntyre KM, Leach S, Baylis M, Morse AP (2012) Suitability of European climate for the Asian tiger mosquito Aedes albopictus: recent trends and future scenarios. J R Soc Interface 9:2708–2717CrossRefPubMedPubMedCentralGoogle Scholar
  22. Campos GS, Bandeira AC, Sardi SI (2015) Zika virus outbreak, Bahia, Brazil. Emerg Infect Dis 21:1885–1886CrossRefPubMedPubMedCentralGoogle Scholar
  23. Cao-Lormeau VM, Blake A, Mons S, Lastere S, Roche C, Vanhomwegen J, Dub T, Baudouin L, Teissier A, Larre P, Vial AL, Decam C, Choumet V, Halstead SK, Willison HJ, Musset L, Manuguerra JC, Despres P, Fournier E, Mallet HP, Musso D, Fontanet A, Neil J, Ghawché F (2016) Guillain-Barré syndrome outbreak caused by ZIKA virus infection in French Polynesia. Lancet 6736:1–9Google Scholar
  24. Capinha C, Rocha J, Sousa CA (2014) Macroclimate determines the global range limit of Aedes aegypti. EcoHealth 11:420–428Google Scholar
  25. Caragata EP, Dutra HL, Moreira LA (2016) Exploiting intimate relationships: controlling mosquito-transmitted disease with Wolbachia. Trends Parasitol 32:207–218CrossRefPubMedGoogle Scholar
  26. Carvalho R, Lourenço-de-Oliveira R, Aparecida Braga I (2014) Updating the geographical distribution and frequency of Aedes albopictus in Brazil with remarks regarding its range in the Americas. Mem Inst Oswaldo Cruz 109:787–796CrossRefPubMedPubMedCentralGoogle Scholar
  27. Cauchemez S, Besnard M, Bompard P, Dub T, Guillemette-Artur P, Eyrolle-Guignot D, Salje H, Van Kerkhove MD, Abadie V, Garel C, Fontanet A, Mallet HP (2016) Association between Zika virus and microcephaly in French Polynesia, 2013–15: a retrospective study. Lancet 6736:1–8Google Scholar
  28. Centers for Disease Control and Prevention (CDC) (1989) Update: Aedes albopictus infestation- United States, Mexico.
  29. Centers for Disease Control and Prevention (CDC) (2015) Malaria parasites.
  30. Centers for Disease Control and Prevention (CDC) (2016) Countries and territories where Chikungunya cases have been reported.
  31. Chadee DD, Hong Fat F, Persad RC (2003) First record of Aedes albopictus from Trinidad, West Indies. J Am Mosq Control Assoc 19:438–439PubMedGoogle Scholar
  32. Charrel RN, Leparc-Goffart I, Gallian P, de Lamballerie X (2014) Globalization of Chikungunya: 10 years to invade the World. Eur J Clin Microbiol Infect Dis 20:662–663CrossRefGoogle Scholar
  33. Chevillon C, Briant L, Renaud F, Devaux C (2008) The Chikungunya threat: an ecological and evolutionary perspective. Trends Microbiol 16:80–88CrossRefPubMedGoogle Scholar
  34. Chouin-Carneiro T, Vega-Rúa A, Vazeille M, Yebakima A, Girod R, Goindin D, Dupont-rouzeyrol M, Lourenço-de-Oliveira R, Failloux AB (2016) Differential susceptibilities of Aedes aegypti and Aedes albopictus from the Americas to Zika virus. PLoS Neg Trop Dis 10:1–11CrossRefGoogle Scholar
  35. Christophers SR (1960) Aedes aegypti (L.) the yellow fever mosquito: its life history, bionomics and structure. Cambridge University Press, New York, p 739Google Scholar
  36. Cohen JM, Smith DL, Cotter C, Ward A, Yamey G, Sabot OJ, Moonen B (2012) Malaria resurgence: a systematic review and assessment of its causes. Malar J 11:122CrossRefPubMedPubMedCentralGoogle Scholar
  37. Costa-da-Silva AL, Lara Capurro M, Bracco JE (2005) Genetic lineages in the yellow fever mosquito Aedes (Stegomyia) aegypti (Diptera: Culicidae) from Peru. Mem Inst Oswaldo Cruz 100:539–544CrossRefPubMedGoogle Scholar
  38. Cuéllar-Jiménez ME, Velásquez-Escobar OL, González-Obando R (2007) Detección de Aedes albopictus (Skuse) (Diptera: Culicidae) En La Ciudad de Cali, Valle Del Cauca, Colombia. Biomedica 27:273–279CrossRefPubMedGoogle Scholar
  39. Dalla Pozza G, Majori G (1992) First record of Aedes albopictus establishment in Italy. J Am Mosq Control Assoc 8:318–320PubMedGoogle Scholar
  40. Delaunay P, Jeannin C, Schaffner F, Marty P (2009) News on the presence of the tiger mosquito Aedes albopictus in Metropolitan France. Arch Pediatr 16:66–71CrossRefGoogle Scholar
  41. Delisle E, Rousseau C, Broche B, Ambert GL, Cochet A, Prat C, Foulongne V (2015) Chikungunya outbreak in Montpellier, France, September to October 2014. Euro Surveill 20:1–6CrossRefGoogle Scholar
  42. Diallo M, Thonnon J, Traore-Lamizana M, Fontenille D (1999) Vectors of Chikungunya virus in Senegal: current data and transmission cycles. Am J Trop Med Hyg 60:281–286CrossRefPubMedGoogle Scholar
  43. Diallo D, Sall A, Buenemann M, Chen R, Faye O, Diagne CT, Faye O, Ba Y, Dia I, Watts D, Weaver SC, Hanley KA, Diallo M (2012) Landscape ecology of sylvatic Chikungunya virus and mosquito vectors in Southeastern Senegal. PLoS Neg Trop Dis 6:1–14CrossRefGoogle Scholar
  44. Diallo D, Sall AA, Diagne CT, Faye O, Faye O, Ba Y, Hanley KA, Buenemann M, Weaver SC, Diallo M (2014) Zika virus emergence in mosquitoes in Southeastern Senegal, 2011. PLoS ONE 9:4–11CrossRefGoogle Scholar
  45. Dick GWA (1952) Zika virus. II. Pathogenicity and physical properties. Trans R Soc Trop Med Hyg 46:521–534CrossRefPubMedGoogle Scholar
  46. Dodson BL, Grant LH, Oluwatobi P, Matacchiero AC, Kramer LD, Rasgon JL (2014) Wolbachia enhances West Nile Virus (WNV) infection in the mosquito Culex tarsalis. PLoS Neg Trop Dis 8:1–7CrossRefGoogle Scholar
  47. Dohm DJ, Turell MJ (2001) Effect of incubation at overwintering temperatures on the replication of West Nile Virus in New York Culex Pipiens (Diptera: Culicidae). J Med Entomol 38:462–464CrossRefPubMedGoogle Scholar
  48. Dueñas J, Rondan C, Albrieu Llinás G, Panzetia-Dutari GM, Gardenal CN (2009) Two different routes of colonization of Aedes aegypti in Argentina from neighboring countries. J Med Entomol 46:1344–1354CrossRefPubMedGoogle Scholar
  49. Duffy M, Chen T, Hancock T, Powers A, Kool J, Lanciotti R, Pretrick M (2009) Zika virus outbreak on Yap Island, Federated States of Micronesia. N Engl J Med 360:2536–2543CrossRefPubMedGoogle Scholar
  50. Duong V, Lambrechts L, Paul RE, Ly S, Lay RS, Long KC, Huy R, Tarantolae A, Scott T, Sakuntabhaic A, Buchy P (2015) Asymptomatic humans transmit Dengue virus to mosquitoes. Proc Natl Acad Sci U S A 112:14688–14693CrossRefPubMedPubMedCentralGoogle Scholar
  51. Dupont-Rouzeyrol M, O’Connor O, Calvez E, Daures M, John M, Grangeon JP, Gourinat AC (2015) Co-infection with Zika and Dengue viruses in 2 patients, New Caledonia, 2014. Emerg Infect Dis 21:381–382CrossRefPubMedPubMedCentralGoogle Scholar
  52. Dutt AK, Dutta HM, Parera C (2010) Resurgence of Malaria in Sri Lanka in the 1970s. In: Malaria in South Asia, eradication and resurgence during the second half of the twentieth century. Editorial Rais Akhtar Vandana Wadhwa, pp 29–41Google Scholar
  53. ECDC (2015) Rapid risk assessment. Microcephaly in Brazil potentially linked to the Zika virus epidemic – 24 November 2015.
  54. EPA Division Health and Ecological Criteria (2008) Health effects support document for 1,1-dichloro-2,2- bis(p-chlorophenyl)ethylene (DDE). US Environmental Protection Agency, Washington, DCGoogle Scholar
  55. Fagbami AH (1979) Zika virus infections in Nigeria: virological and seroepidemiological investigations in Oyo State. J Hyg 83:213–219CrossRefPubMedGoogle Scholar
  56. Fernández M, Del Carmen M, Jean Y, Fuster Callaba CA, Somarriba López L (2012) The first report of Aedes (Stegomyia) albopictus in Haiti. Mem Inst Oswaldo Cruz 107:279–281CrossRefGoogle Scholar
  57. Forattini OP (1986) Identificação de Aedes (Stegomyia) albopictus (Skuse) No Brasil. Rev Saude Publica 20:244–245CrossRefPubMedGoogle Scholar
  58. Frank C, Cadar D, Schlaph A, Neddersen N, Günther S, Tappe D (2016) Sexual transmission of Zika virus in Germany, April 2016. Euro Surveill 21:1–4CrossRefGoogle Scholar
  59. Gjenero-Margan I, Aleraj B, Krajcar D, Lesnikar V, Klobučar A, Pem-Novosel I, Kurečić-Filipović S, Komparak S, Martić R, Đuričić S, Betica-Radić L, Okmadžić J, Vilibić-Čavlek T, Babić-Erceg A, Turković B, Avšić-Županc T, Radić I, Ljubić M, Šarac K, Benić N, Mlinarić-Galinović G (2011) Autochthonous dengue fever in Croatia, August–September 2010. Euro Surveill 16:1–4Google Scholar
  60. Gorrochotegui-Escalante N, Gomez-Machorro C, Lozano-Fuentes S, Fernandez-Salas I, De Lourdes Muñoz M, Farfan-Ale JA, Garcia-Rejon J, Beaty BJ, Black WC (2002) Breeding structure of Aedes aegypti populations in Mexico varies by region. Am J Trop Med Hyg 66:213–222CrossRefPubMedGoogle Scholar
  61. Grandadam M, Caro V, Plumet S, Thiberge JM, Souarès Y, Failloux AB, Tolou HJ, Budelot M, Cosserat D, Leparc-Goffart I, Desprès P (2011) Chikungunya virus, Southeastern France. Emerg Infect Dis 17:910–913CrossRefPubMedPubMedCentralGoogle Scholar
  62. Grard G, Caron M, Manfred Mombo I, Nkoghe D, Mboui Ondo S, Jiolle D, Fontenille D, Paupy C, Leroy EM (2014) Zika virus in Gabon (Central Africa)-2007: a new threat from Aedes albopictus? PLoS Neg Trop Dis 8:1–6CrossRefGoogle Scholar
  63. Gratz NG (2004) Critical review of Aedes albopictus. Med Vet Entomol 18:215–227CrossRefPubMedGoogle Scholar
  64. Gubler DJ (1998) Dengue and Dengue hemorrhagic fever. Clin Microbiol Rev 11:480–496CrossRefPubMedPubMedCentralGoogle Scholar
  65. Gubler DJ (2002) The global emergence/resurgence of arboviral diseases as public health problems. Med Res Arch 33:330–342CrossRefGoogle Scholar
  66. Guzmán MG, Kouri G (2008) Dengue haemorrhagic fever integral hypothesis: confirming observations, 1987–2007. Trans R Soc Trop Med Hyg 102:522–523CrossRefPubMedGoogle Scholar
  67. Guzmán MG, García G, Kouri G (2008) Dengue Y Fiebre Hemorrágica Del Dengue: Un Problema de Salud Mundial. Rev Cubana Med Trop 60:5–16Google Scholar
  68. Guzmán MG, Halstead SB, Artsob H, Buchy P, Farrar J, Gubler DJ, Hunsperger E, Kroeger A, Margolis H, Martínez E, Nathan MB, Pelegrino JL, Simmons S, Yoksan S, Peeling RW (2010) Dengue: a continuing global threat. Nat Rev Microbiol 8:7–16CrossRefGoogle Scholar
  69. Hanson SM, Craig GB (1994) Cold acclimation, diapause, and geographic origin affect cold hardiness in eggs of Aedes albopictus (Diptera: Culicidae). J Med Entomol 31:192–201CrossRefPubMedGoogle Scholar
  70. Hardy JL, Houk EJ, Kramer LD, Reeves WC (1983) Intrinsic factors affecting vector competence of mosquitoes for arboviruses. Annu Rev Entomol 28:229–262CrossRefPubMedGoogle Scholar
  71. Hawley WA, Reiter P, Copeland RS, Pumpuni CB, Craig GB (1987) Aedes albopictus in North America: probable introduction in used tires from Northern Asia. Science 236:1114–1116CrossRefPubMedGoogle Scholar
  72. Hay SI, Okiro EA, Gething PW, Patil AP, Tatem A, Guerra CA, Snow RW (2010) Estimating the global clinical burden of Plasmodium falciparum Malaria in 2007. PLoS Med 7:1–14Google Scholar
  73. Herrera F, Urdaneta L, Rivero J, Zoghbi N, Ruiz J, Carrasquel G, Martínez JA, Pernalete M, Villegas P, Montoya A, Rubio-Palis Y, Rojas E (2006) Population genetic structure of the Dengue mosquito Aedes aegypti in Venezuela. Mem Inst Oswaldo Cruz 101:625–633CrossRefPubMedGoogle Scholar
  74. Hill CA, Kafatos FC, Stansfield SK, Collins FH (2005) Arthropod-borne diseases: vector control in the genomics era. Nat Rev Microbiol 3:262–268CrossRefPubMedGoogle Scholar
  75. ISSG (2009) Global invasive species database – Aedes albopictus.
  76. Izri A, Bitam I, Charrel RN (2011) First entomological documentation of Aedes (Stegomyia) albopictus (Skuse, 1894) in Algeria. Clin Microbiol Infect 17:1116–1118CrossRefPubMedGoogle Scholar
  77. Juliano SA, Lounibos LP, O’Meara GF (2004) A field test for competitive effects of Aedes albopictus on A. aegypti in South Florida: differences between sites of coexistence and exclusion? Oecologia 139:583–593CrossRefPubMedPubMedCentralGoogle Scholar
  78. Karunamoorthi K, Sabesan S (2013) Insecticide resistance in insect vectors of disease with special reference to mosquitoes: a potential threat to global public health. Public Health 2:4–18Google Scholar
  79. Kay BH, Ives WA, Whelan PI, Barker-Hudson P, Fanning ID, Marks EN (1990) Is Aedes albopictus in Australia? Med J Aust 153:31–34PubMedGoogle Scholar
  80. Kilpatrick AM, Randolph SE (2012) Drivers, dynamics, and control of emerging vector-borne zoonotic diseases. Lancet 380:1946–1955CrossRefPubMedPubMedCentralGoogle Scholar
  81. Klobucar A, Merdić E, Benić N, Baklaić Z, Krcmar S (2006) First record of Aedes albopictus in Croatia. J Am Mosq Control Assoc 22:147–148CrossRefPubMedGoogle Scholar
  82. Kouri GP, Guzmán MG, Bravo JR (1987) Why Dengue haemorrhagic fever in Cuba? 2. An integral analysis. Trans R Soc Trop Med Hyg 81:821–823CrossRefPubMedGoogle Scholar
  83. Kraemer MUG, Sinka ME, Duda K, Mylne A, Shearer FM, Barker CM, Moore CG, Carvalho RG, Coelho GE, Van Bortel W, Hendrickx G, Schaffner F, Elyazar IRF, Teng HJ, Brady OJ, Messina JP, Pigott JM, Scott TW, Smith DL, WilliamWint GR, Golding N, Hay S (2015) The global distribution of the arbovirus vectors Aedes aegypti and Ae. albopictus. eLife 4:1–18CrossRefGoogle Scholar
  84. Krueger A, Hagen RM (2007) Short communication: first record of Aedes albopictus in Gabon, Central Africa. Tropical Med Int Health 12:1105–1107CrossRefGoogle Scholar
  85. Kuno G, Chang GJJ (2007) Full-length sequencing and genomic characterization of Bagaza, Kedougou, and Zika viruses. Arch Virol 152:687–696CrossRefPubMedGoogle Scholar
  86. La Ruche G, Souarès Y, Armengaud A, Peloux-Petiot F, Delaunay P, Desprès P, Lenglet A, Jourdain F, Leparc-Goffart I, Charlet F, Ollier L, Mantey K, Mollet T, Fournier JP, Torrents R, Leitmeyer K, Hilairet P, Zeller H, Van Bortel W, Dejour-Salamanca D, Grandadam M, Gastellu-Etchegorry M (2010) First two autochthonous Dengue virus infections in Metropolitan France, September 2010. Euro Surveill 15:1–5Google Scholar
  87. Labeaud AD, Bashir F, King CH (2011) Measuring the burden of arboviral diseases: the spectrum of morbidity and mortality from four prevalent infections. Popul Health Metrics 9:1–11CrossRefGoogle Scholar
  88. Lambrechts L, Ferguson NM, Harris E, Holmes EC, McGraw EA, O’Neill SL, Ooi EE, Ritchie SA, Ryan PA, Scott TW, Simmons CP, Weaver SC (2015) Assessing the epidemiological effect of Wolbachia for Dengue control. Lancet Infect Dis 15:862–866CrossRefPubMedPubMedCentralGoogle Scholar
  89. Lanciotti RS, Valadere AM (2014) Transcontinental movement of Asian genotype Chikungunya virus. Emerg Infect Dis 20:1400–1402CrossRefPubMedPubMedCentralGoogle Scholar
  90. Leparc-Goffart I, Nougairede A, Cassadou S, Prat C, de Lamballerie X (2014) Chikungunya in the Americas. Lancet 383:514CrossRefPubMedGoogle Scholar
  91. Li MI, Wong PSJ, Ng LC, Tan CH (2012) Oral susceptibility of Singapore Aedes (Stegomyia) aegypti (Linnaeus) to Zika virus. PLoS Neg Trop Dis 6:1–5Google Scholar
  92. Lourenco-de-Oliveira R, Castro MG, Braks MA, Lounibos LP (2004) The invasion of urban forest by Dengue vectors in Rio de Janeiro. J Vector Ecol 29:94–100PubMedGoogle Scholar
  93. Lourenço-de-Oliveira R, Vega Rua A, Vezzani D, Willat G, Vazeille M, Mousson L, Failloux AB (2013) Aedes aegypti from temperate regions of South America are highly competent to transmit Dengue virus. BMC Infect Dis 13:1–8CrossRefGoogle Scholar
  94. Lugo E, Moreno G, Zachariah MA, López M, López JD, Delgado MA, Valle SI, Espinoza PM, Salgado MJ, Pérez R, Hammond SN, Harris E (2005) Identification of Aedes albopictus in Urban Nicaragua. J Am Mosq Control Assoc 21:325–327CrossRefGoogle Scholar
  95. Marchette NJ, Garcia R, Rudnick A (1969) Isolation of Zika virus from Aedes aegypti mosquitoes in Malaysia. Am J Trop Med Hyg 18:411–415CrossRefGoogle Scholar
  96. Marcombe S, Carron A, Darriet F, Etienne M, Agnew P, Tolosa M, Yp-Tcha MM, Lagneau C, Yébakima A, Corbel V (2009) Reduced efficacy of pyrethroid space sprays for Dengue control in an area of Martinique with pyrethroid resistance. Am J Trop Med Hyg 80:745–751CrossRefPubMedGoogle Scholar
  97. McCrae AWR, Kirya BG (1982) Yellow fever and Zika virus epizootics and enzootics in Uganda. Trans R Soc Trop Med Hyg 76:552–562CrossRefPubMedGoogle Scholar
  98. Medlock JM, Hansford KM, Versteirt V, Cull B, Kampen H, Fontenille D, Hendrickx G, Zeller H, Van Bortel W, Schaffner F (2015) An entomological review of invasive mosquitoes in Europe. Bull Entomol Res:1–27Google Scholar
  99. Mombouli JV, Bitsindou P, Ellion DOA, Grolla A, Feldmann H, Niama FR, Parra HJ, Munster VJ (2013) Chikungunya virus infection, Brazzaville, Republic of Congo, 2011. Emerg Infect Dis 19:1542–1543CrossRefPubMedPubMedCentralGoogle Scholar
  100. Mori A, Oda T (1981) Studies on the egg diapause and overwintering of Aedes albopictus in Nagasaki. J Trop Med 23:79–90Google Scholar
  101. Muir LE, Kay BH (1998) Aedes aegypti survival and dispersal estimated by mark-release-recapture in Northern Australia. Am J Trop Med Hyg 58:277–282CrossRefPubMedGoogle Scholar
  102. Musso D, Beltrame A, Zammarchi L (2015) Zika virus transmission from French Polynesia to Brazil. Emerg Infect Dis 21: 1887CrossRefPubMedPubMedCentralGoogle Scholar
  103. Najera JA, Gonzalez-Silva M, Alonso PL (2011) Some lessons for the future from the global Malaria eradication programme (1955–1969). PLoS Med 8:1–7CrossRefGoogle Scholar
  104. Nakkhara P, Chongsuvivatwong V, Thammapalo S (2013) Risk factors for symptomatic and asymptomatic Chikungunya infection. Trans R Soc Trop Med Hyg 107:789–796CrossRefPubMedGoogle Scholar
  105. Navarro JC, Quintero L, Zorrilla A, González R (2013) Molecular tracing with mitochondrial ND5 of the invasive mosquito Aedes (Stegomyia) albopictus (Skuse) in Northern South America. J Entomol Zool Stud 1:32–39Google Scholar
  106. Ngarakana-Gwasira ET, Bhunu CP, Masocha M, Mashonjowa E (2016) Assessing the role of climate change in Malaria transmission in Africa. Malar Res Treat 2016:1–7CrossRefGoogle Scholar
  107. Ngoagouni C, Kamgang B, Nakouné E, Paupy C, Kazanji M (2015) Invasion of Aedes albopictus (Diptera: Culicidae) into Central Africa: what consequences for emerging diseases? Parasit Vectors 8:1–7CrossRefGoogle Scholar
  108. Oehler E, Watrin L, Larre P, Leparc-Goffart I, Lastere S, Valour F, Baudouin L, Mallet HP, Musso D, Ghawche F (2014) Zika virus infection complicated by Guillain-Barre syndrome-case report, French Polynesia, December 2013. Euro Surveill 19:7–9CrossRefGoogle Scholar
  109. Ogata K, Lopez Samayoa A (1996) Discovery of Aedes albopictus in Guatemala. J Am Mosq Control Assoc 12:503–506PubMedGoogle Scholar
  110. Oliveira-Melo AS, Malinger G, Ximenes R, Szejnfeld PO, Alves Sampaio S, Bispo de Filippis AM (2016) Zika virus intrauterine infection causes fetal brain abnormality and microcephaly: tip of the iceberg? Ultrasound Obstet Gynecol 47:6–7CrossRefPubMedGoogle Scholar
  111. PAHO/WHO (2016) Regional Zika epidemiological update (Americas) 2016 (July): 26 May 2016.
  112. Paty MC, Six C, Charlet F, Heuzé G, Cochet A, Wiegandt A, Chappert JL, Dejour-Salamanca D, Guinard A, Soler P, Servas V, Vivier-Darrigol M, Ledrans M, Debruyne M, Schaal O, Jeannin C, Helynck B, Leparc-Goffart I, Coignard B (2014) Large number of imported Chikungunya cases in mainland France, 2014: a challenge for surveillance and response. Euro Surveill 19:1–5CrossRefGoogle Scholar
  113. Paupy C, Delatte H, Bagny L, Corbel V, Fontenille D (2009) Aedes albopictus, an arbovirus vector: from the darkness to the light. Microbes Infect 11:1177–1185CrossRefPubMedGoogle Scholar
  114. Paupy C, Brengues C, Ndiath O, Toty C, Hervé JP, Simard F (2010) Morphological and genetic variability within Aedes aegypti in Niakhar. Senegal Infect Genet Evol 10:473–480CrossRefPubMedGoogle Scholar
  115. Paupy C, Le Goff G, Brengues C, Guerra M, Revollo J, Barja Simon Z, Hervé JP, Fontenille D (2012) Genetic structure and phylogeography of Aedes aegypti, the Dengue and yellow-fever mosquito vector in Bolivia. Infect Genet Evol 12:1260–1269CrossRefPubMedGoogle Scholar
  116. Paz S, Semenza JC (2016) El Niño and climate change – contributing factors in the dispersal of Zika virus in the Americas? Lancet 387:745CrossRefPubMedGoogle Scholar
  117. Pena CJ, Gonzalvez G, Chadee DD (2003) Seasonal prevalence and container preferences of Aedes albopictus in Santo Domingo City, Dominican Republic. J Vector Ecol 28:208–212PubMedGoogle Scholar
  118. Powell JR, Tabachnick WJ (2013) History of domestication and spread of Aedes aegypti – a review. Mem Inst Oswaldo Cruz 108:11–17CrossRefPubMedPubMedCentralGoogle Scholar
  119. Powers AM, Logue CH (2007) Changing patterns of Chikungunya virus: re-emergence of a zoonotic arbovirus. J Gen Virol 88:2363–2377CrossRefPubMedGoogle Scholar
  120. Reiter P (1998) Aedes albopictus and the world trade in used tires, 1988–1995: the shape of things to come? J Am Mosq Control Assoc 14:83–94PubMedGoogle Scholar
  121. Reiter P, Darsie R (1984) Aedes albopictus in Memphis, Tennessee (USA): an achievement of modern transportation? Mosq News 44:396–399Google Scholar
  122. Reiter P, Fontenille D, Paupy C (2006) Aedes albopictus as an epidemic vector of Chikungunya virus: another emerging problem? Lancet Infect Dis 6:463–464CrossRefPubMedGoogle Scholar
  123. Rezza G, Nicoletti L, Angelini R, Romi R, Finarelli AC, Panning M, Cordioli P, Fortuna C, Boros S, Magurano F, Silvi G, Angelini P, Dottori M, Ciufolini MG, Majori GC, Cassone A (2007) Infection with Chikungunya virus in Italy: an outbreak in a temperate region. Lancet 370:1840–1846CrossRefPubMedGoogle Scholar
  124. Rico-Hesse R, Harrison LM, Salas RA, Tovar D, Nisalak A, Ramos C, Boshell J, de Mesa MT, Nogueira RM, da Rosa AT (1997) Origins of Dengue type 2 viruses associated with increased pathogenicity in the Americas. Virology 230:244–251CrossRefGoogle Scholar
  125. Rogers DJ, Suk JE, Semenza JC (2014) Using global maps to predict the risk of Dengue in Europe. Acta Trop 129:1–14CrossRefPubMedGoogle Scholar
  126. Roiz D, Neteler M, Castellani C, Arnoldi D, Rizzoli A (2011) Climatic factors driving invasion of the tiger Mosquito (Aedes albopictus) into new areas of Trentino, Northern Italy. PLoS One 6:4–11CrossRefGoogle Scholar
  127. Salazar MI, Richardson JH, Sánchez-Vargas I, Olson KE, Beaty BJ (2007) Dengue virus type 2: replication and tropisms in orally infected Aedes aegypti mosquitoes. BMC Microbiol 7:1–13CrossRefGoogle Scholar
  128. Saluzzo JF, Dodet B (1997) Facteurs d’émergence des maladies à arbovirus. Med Sci 13:1018–1024Google Scholar
  129. Salvatella Agrello R (1997) Aedes aegypti (Diptera, Culicidae). Notificación de Su Presencia En Uruguay/Aedes aegypti (Diptera, Culicidae). Report of finding in Uruguay. Rev Med Urug 13:118–121Google Scholar
  130. Sampathkumar P, Sanchez JL (2016) Zika virus in the Americas: a review for clinicians. Mayo Clin Proc 91:514–521CrossRefPubMedGoogle Scholar
  131. Savage HM, Ezike VI, Nwankwo AC, Spiegel R, Miller BR (1992) First record of breeding populations of Aedes albopictus in continental Africa: implications for arboviral transmission. J Am Mosq Control Assoc 8:101–103PubMedGoogle Scholar
  132. Schaffner F, Karch S (2000) Première observation d’Aedes albopictus (Skuse, 1894) en France Métropolitaine. C.R. Acad Sci Paris 323:373–375Google Scholar
  133. Schaffner F, Van Bortel W, Coosemans M (2004) First record of Aedes (Stegomyia) albopictus in Belgium. J Am Mosq Control Assoc 20:201–203PubMedGoogle Scholar
  134. Schatzmayr HG (2000) Dengue situation in Brazil by year 2000. Mem Inst Oswaldo Cruz 95:179–181CrossRefPubMedGoogle Scholar
  135. Scholte EJ, Dijkstra E, Blok H, De Vries A, Takken W, Hofhuis A, Koopmans M, De Boer A, Reusken C (2008) Accidental importation of the mosquito Aedes albopictus into the Netherlands: a survey of mosquito distribution and the presence of Dengue virus. Med Vet Entomol 22:352–358CrossRefGoogle Scholar
  136. Schuffenecker I, Iteman I, Michault A, Murri S, Frangeul L, Vaney MC, Lavenir R, Pardigon N, Reynes JM, Pettinelli F, Biscornet L, Diancourt L, Michel S, Duquerroy S, Guigon G, Frenkiel MP, Bréhin AC, Cubito N, Desprès P, Kunst F, Rey F, Zeller H, Brisse S (2006) Genome microevolution of Chikungunya viruses causing the Indian ocean outbreak. PLoS Med 3:1058–1070CrossRefGoogle Scholar
  137. Schweigmann N, Vezzani D, Orellano P, Kuruc J, Boffi R (2004) Aedes albopictus in an area of Misiones, Argentina. Rev Saude Publica 38:136–138CrossRefPubMedGoogle Scholar
  138. Simmons SW, Upholt WM (1951) Insecticides in disease control; review of the literature. Bol Sanit Panam 31:1–21Google Scholar
  139. Simon F, Parola P, Grandadam M, Fourcade S, Oliver M, Brouqui P, Hance P, Kraemer P, Anzime AM, de Lamballerie X, Charrel R, Tolou H (2007) Chikungunya infection: an emerging rheumatism among travelers returned from Indian Ocean Islands. Report of 47 cases. Medicine 86:123–137CrossRefPubMedGoogle Scholar
  140. Slatko BE, Luck AN, Dobson SL, Foster JM (2014) Wolbachia endosymbionts and human disease control. Mol Biochem Parasitol 195:88–95CrossRefPubMedGoogle Scholar
  141. Slosek J (1986) Aedes aegypti mosquitoes in the Americas: a review of their interactions with the human population. Soc Sci Med 23:249–257CrossRefPubMedGoogle Scholar
  142. Smith CEG (1956) The history of Dengue in tropical Asia and its probable relationship to the mosquito Aedes aegypti. J Trop Med Hyg 59:243–251PubMedGoogle Scholar
  143. Soper FL (1963) The elimination of urban yellow fever in the Americas through the eradication of Aedes aegypti. Am J Public Health 53:7–16CrossRefGoogle Scholar
  144. Sprenger D, Wuithiranyagool T (1986) The discovery and distribution of Aedes albopictus in Harris County, Texas. J Am Mosq Control Assoc 2:217–219PubMedGoogle Scholar
  145. Tabachnick WJ (1991) The evolutionary relationships among arboviruses and the evolutionary relationships of their vectors provides a method for understanding vector-host interactions. J Med Entomol 28:297–298CrossRefPubMedGoogle Scholar
  146. Thomas DD, Donnelly CA, Wood RJ, Alphey LS (2000) Insect population control using a dominant, repressible, lethal genetic system. Science 287:2474–2476CrossRefPubMedGoogle Scholar
  147. Tognarelli J, Ulloa S, Villagra E, Lagos J, Aguayo C, Fasce R, Parra B, Mora J, Becerra N, Lagos N, Vera L, Olivares B, Vilches M, Fernández J (2016) A report on the outbreak of Zika virus on Easter Island, South Pacific, 2014. Arch Virol 161:665–668CrossRefPubMedGoogle Scholar
  148. Tompkins AM, Caporaso L (2016) Assessment of Malaria transmission changes in Africa, due to the climate impact of land use change using coupled model intercomparison project phase 5 earth system models. Geospat Health 11:380PubMedGoogle Scholar
  149. Tsetsarkin KA, Vanlandingham DL, McGee CE, Higgs S (2007) A single mutation in Chikungunya virus affects vector specificity and epidemic potential. PLoS Pathog 3:1895–1906CrossRefGoogle Scholar
  150. Tsetsarkin KA, Chen R, Yun R, Rossi SL, Plante KS, Guerbois M, Forrester N, Perng GC, Sreekumar E, Leal G, Huang J, Mukhopadhyay S, Weaver SC (2014) Multi-peaked adaptive landscape for Chikungunya virus evolution predicts continued fitness optimization in Aedes albopictus mosquitoes. Nat Commun 5:1–14CrossRefGoogle Scholar
  151. Urbanski JM, Benoit JB, Michaud MR, Denlinger DL, Armbruster P (2010) The molecular physiology of increased egg desiccation resistance during diapause in the invasive mosquito, Aedes albopictus. Proc Biol Sci 277:2683–2692CrossRefPubMedPubMedCentralGoogle Scholar
  152. Urdaneta-Marquez L, Failloux AB (2011) Population genetic structure of Aedes aegypti, the principal vector of Dengue viruses. Infect Genet Evol 11:253–261CrossRefPubMedGoogle Scholar
  153. Vanderplank FL (1947) Some observations on the hunger-cycle of the tsetse-flies Glossina swynnertoni and G. pallidipes (Diptera) in the field. Bull Entomol Res 38:431–438CrossRefPubMedGoogle Scholar
  154. Vanderplank FL (1948) Experiments in crossbreeding tsetse-flies, Glossina species. Ann Trop Med Parasitol 42:131–152CrossRefPubMedGoogle Scholar
  155. Vasilakis N, Weaver SC (2008) Chapter 1: the history and evolution of human Dengue emergence. Adv Virus Res 72:1–76CrossRefPubMedGoogle Scholar
  156. Vasilakis N, Cardosa J, Hanley KA, Holmes EC, Weaver SC (2011) Fever from the forest: prospects for the continued emergence of sylvatic Dengue virus and its impact on public health. Nat Rev Microbiol 9:532–541CrossRefPubMedPubMedCentralGoogle Scholar
  157. Vazeille M, Moutailler S, Coudrier D, Rousseaux C, Khun H, Huerre M, Thiria J, Dehecq JS, Fontenille D, Schuffenecker I, Despres P, Failloux AB (2007) Two Chikungunya isolates from the outbreak of La Reunion (Indian Ocean) exhibit different patterns of infection in the mosquito, Aedes albopictus. PLoS One 2:1–9CrossRefGoogle Scholar
  158. Vega-Rúa A, Zouache K, Girod R, Failloux AB, Lourenco-de-Oliveira R (2014) High level of vector competence of Aedes aegypti and Aedes albopictus from ten American countries as a crucial factor in the spread of Chikungunya virus. J Virol 88:6294–6306CrossRefPubMedPubMedCentralGoogle Scholar
  159. Vega-Rúa A, Lourenço-de-Oliveira R, Mousson L, Vazeille M, Fuchs S, Yébakima A, Gustave J, Girod R, Dusfour I, Leparc-Goffart I, Vanlandingham DL, Huang Y, Lounibos LP, Souand MA, Nougairede A, de Lamballerie X, Failloux AB (2015) Chikungunya virus transmission potential by local Aedes mosquitoes in the Americas and Europe. PLoS Neg Trop Dis 9:1–18CrossRefGoogle Scholar
  160. Vezzani D, Carbajo AE (2008) Aedes aegypti, Aedes albopictus, and Dengue in Argentina: current knowledge and future directions. Mem Inst Oswaldo Cruz 103:66–74CrossRefPubMedGoogle Scholar
  161. Weaver SC, Reisen WK (2010) Present and future arboviral threats. Antivir Res 85:328–345CrossRefPubMedGoogle Scholar
  162. Weaver SC, Costa F, Garcia-blanco MA, Ko AI, Ribeiro GS, Saade G, Shi PY, Vasilakis N (2016) Zika virus: history, emergence, biology, and prospects for control. Antivir Res 130:69–80CrossRefPubMedGoogle Scholar
  163. WHO (2004) WHO Global strategic framework for integrated vector management. Rep Vol. 10.
  164. WHO (2007) Outbreak and spread of chikungunya/Chikungunnya: flambée et propagation. WHO. Wkly Epidemiol Rec 82:409–416Google Scholar
  165. WHO (2012) Zika virus outbreaks in the Americas. WHO Wkly Epidemiol Rec 87:317–328Google Scholar
  166. WHO (2014) Global health day: about vector borne diseases.
  167. WHO (2015a) World malaria day: call to close gaps in prevention and treatement to defeat malaria.
  168. WHO (2016). Dengue and severe Dengue.
  169. WHO (2017) Situation report: ZIKA virus, microcephaly, Guillain-Barré syndrome 10 March 2017. WHO situation report.
  170. Wong PSJ, Irene Li MZ, Chong CS, Ng LC, Tan CH (2013) Aedes (Stegomyia) albopictus (Skuse): a potential vector of Zika virus in Singapore. PLoS Neg Trop Dis 7:1–5Google Scholar
  171. Wood RJ (2005) Genetic control of vectors. In: Marquardt WC et al (eds) Biology of disease vectors. Elsevier Academic Press, San Diego, pp 661–669Google Scholar
  172. Woodall J (1995) Aedes albopictus – Honduras.
  173. Wymann MN, Flacio E, Radczuweit S, Patocchi N, Luthy P (2008) Asian tiger mosquito (Aedes albopictus) – a threat for Switzerland? Euro Surveill 13:8–9CrossRefGoogle Scholar
  174. Ye YH, Carrasco AM, Frentiu FD, Chenoweth SF, Beebe NW, van den Hurk AF, Simmons CP, O’Neill SL, McGraw EA (2015) Wolbachia reduces the transmission potential of Dengue-infected Aedes aegypti. PLoS Negl Trop Dis 9:1–19CrossRefGoogle Scholar
  175. Zouache K, Fontaine A, Vega-Rúa A, Mousson L, Thiberge JM, Lourenco-De-Oliveira R, Caro V, Lambrechts L, Failloux AB (2014) Three-way interactions between mosquito population, viral strain and temperature underlying Chikungunya virus transmission potential. Proc Biol Sci 281:1–9CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Laboratory of Vector Control Research, Environment and Health UnitInstitut Pasteur of GuadeloupeLes AbymesFrance
  2. 2.Department of Environmental and Global Health, College of Public Health and Health Professions, Emerging Pathogens InstituteUniversity of FloridaGainesvilleUSA

Personalised recommendations