Advertisement

New Multi-objectives Scheduling Strategies in Docker SwarmKit

  • Tarek Menouer
  • Christophe Cérin
  • Étienne Leclercq
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11336)

Abstract

This paper presents new multi-objectives scheduling strategies implemented in Docker SwarmKit. Docker SwarmKit is a container toolkit for orchestrating distributed systems at any scale. Currently, Docker SwarmKit has one scheduling strategy called Spread. Spread is based only on one objective to select from a set of cloud nodes, one node to execute a container. However, the containers submitted by users to be scheduled in Docker SwarmKit are configured according to multi-objectives criteria, as the number of CPUs and the memory size. To better address the multi-objectives configuration problem of containers, we introduce the concept and the implementation of new multi-objectives scheduling strategies adapted for Cloud Computing environments and implemented in Docker SwarmKit. The principle of our multi-objectives strategies consist to select a node which has a good compromise between multi-objectives criteria to execute a container. The proposed scheduling strategies are based on a combinaison of PROMETHEE and Kung multi-objectives decision algorithms in order to place containers. The implementation in Docker SwarmKit and experiments of our new strategies demonstrate the potential of our approach under different scenarios.

Keywords

Systems software Scheduling and resource management Container technology Cloud computing Application of parallel and distributed algorithms 

Notes

Acknowledgments

This work is funded by the French Fonds Unique Ministériel (FUI) Wolphin Project. We thank Grid5000 team for their help to use the testbed.

References

  1. 1.
    Behzadian, M., Kazemzadeh, R., Albadvi, A., Aghdasi, M.: Promethee: a comprehensive literature review on methodologies and applications. Eur. J. Oper. Res. 200(1), 198–215 (2010)CrossRefGoogle Scholar
  2. 2.
    Cáceres, L.P., Pagnozzi, F., Franzin, A., Stützle, T.: Automatic configuration of GCC using irace. In: Lutton, E., Legrand, P., Parrend, P., Monmarché, N., Schoenauer, M. (eds.) EA 2017. LNCS, vol. 10764, pp. 202–216. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-78133-4_15CrossRefGoogle Scholar
  3. 3.
    Cérin, C., Ben-Abdaallah, W., Saad, W., Menouer, T.: A new docker swarm scheduling strategy. In: 7th International Symposium on Cloud and Service Computing, Kanazawa, Japan (2017)Google Scholar
  4. 4.
    Chang, P.-C., Chen, S.-H.: The development of a sub-population genetic algorithm II (SPGA II) for multi-objective combinatorial problems. Appl. Soft Comput. 9(1), 173–181 (2009)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Choi, S., Myung, R., Choi, H., Chung, K., Gil, J., Yu, H.: GPSF: general-purpose scheduling framework for container based on cloud environment. In: IEEE iThings and IEEE GreenCom and IEEE CPSCom and IEEE SmartData (2016)Google Scholar
  6. 6.
    Daolio, F., Liefooghe, A., Vérel, S., Aguirre, H.E., Tanaka, K.: Problem features versus algorithm performance on rugged multiobjective combinatorial fitness landscapes. Evol. Comput. 25(4), 555–585 (2017)CrossRefGoogle Scholar
  7. 7.
    Ding, L., Zeng, S., Kang, L.: A fast algorithm on finding the non-dominated set in multi-objective optimization. In: The 2003 Congress on Evolutionary Computation, CEC 2003, vol. 4, pp. 2565–2571, December 2003Google Scholar
  8. 8.
  9. 9.
    Grillet, A.: Comparaison of containers schedulers. Medium (2016)Google Scholar
  10. 10.
    Brans, J.-P., Mareschal, B.: Promethee methods - multiple criteria decision analysis: state of the art surveys. International Series in Operations Research & Management Science, vol. 78 (2005)Google Scholar
  11. 11.
    Jimenez, L.L., Simon, M.G., Schelén, O., Kristiansson, J., Synnes, K., Åhlund, C.: CoMA: resource monitoring of docker containers. In: Proceedings of the 5th International Conference on Cloud Computing and Services Science (CLOSER 2015) (2015)Google Scholar
  12. 12.
    Knowles, J.D., Corne, D.W.: M-PAES: a memetic algorithm for multiobjective optimization. In: Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512), vol. 1, pp. 325–332 (2000)Google Scholar
  13. 13.
    Kung, H.T., Luccio, F., Preparata, F.P.: On finding the maxima of a set of vectors. J. ACM 22(4), 469–476 (1975)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Li, K., Fialho, Á., Kwong, S., Zhang, Q.: Adaptive operator selection with bandits for a multiobjective evolutionary algorithm based on decomposition. IEEE Trans. Evol. Comput. 18(1), 114–130 (2014)CrossRefGoogle Scholar
  15. 15.
    Medel, V., Tolón, C., Arronategui, U., Tolosana-Calasanz, R., Bañares, J.Á., Rana, O.F.: Client-side scheduling based on application characterization on Kubernetes. In: Pham, C., Altmann, J., Bañares, J.Á. (eds.) GECON 2017. LNCS, vol. 10537, pp. 162–176. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-68066-8_13CrossRefGoogle Scholar
  16. 16.
    Menouer, T., Cerin, C.: Scheduling and resource management allocation system combined with an economic model. In: The 15th IEEE International Symposium on Parallel and Distributed Processing with Applications (IEEE ISPA 2017) (2017)Google Scholar
  17. 17.
    Peinl, R., Holzschuher, F., Pfitzer, F.: Docker cluster management for the cloud-survey results and own solution. J. Grid Comput. 14(2), 265–282 (2016)CrossRefGoogle Scholar
  18. 18.
    Deshmukh, S.C.: Preference ranking organization method of enrichment evaluation (PROMETHEE). Int. J. Eng. Sci. Inven. 2, 28–34 (2013)Google Scholar
  19. 19.
    Taillandier, P., Stinckwich, S.: Using the promethee multi-criteria decision making method to define new exploration strategies for rescue robots. In: International Symposium on Safety, Security, and Rescue Robotics (2011)Google Scholar
  20. 20.
    Ullman, J.: NP-complete scheduling problems. J. Comput. Syst. Sci. 10(3), 384–393 (1975)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Xing, L.-N., Chen, Y.-W., Yang, K.-W.: Multi-objective flexible job shop schedule: design and evaluation by simulation modeling. Appl. Soft Comput. 9(1), 362–376 (2009)CrossRefGoogle Scholar
  22. 22.
    Zhou, A., Qu, B.-Y., Li, H., Zhao, S.-Z., Suganthan, P.N., Zhang, Q.: Multiobjective evolutionary algorithms: a survey of the state of the art. Swarm Evol. Comput. 1(1), 32–49 (2011)CrossRefGoogle Scholar
  23. 23.
    The apache software foundation. Mesos, apache. http://mesos.apache.org/
  24. 24.
    Kubernetes scheduler. https://kubernetes.io/
  25. 25.

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Tarek Menouer
    • 1
  • Christophe Cérin
    • 1
  • Étienne Leclercq
    • 1
  1. 1.University of Paris 13, Sorbonne Paris Cité, LIPN/CNRS UMR 7030VilletaneuseFrance

Personalised recommendations