Advertisement

A Cancelable Multi-Biometric Template Generation Algorithm Based on Bloom Filter

  • Lin You
  • Xun Li
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11336)

Abstract

For the security issue of multiple biometric templates in current multi-biometric systems, this paper proposes a cancelable multi-biometric template generation algorithm based on Bloom filter. Our algorithm uses the XOR operation to fuse the grouped fingerprint binary features and the face binary features into one template at the feature level, then transforms the fusion template based on the irreversibility of the Bloom filter. The cancelability and diversity of the fusion template can be achieved by updating the random matrix. Finally, a traversal matching method is used to calculate the matching score in the encryption domain. The experimental results show that our algorithm can ensure the reliability of the identity authentication and improve the security of the multi-biometric template.

Keywords

Bloom filter Fingerprint feature Face feature Template protection 

References

  1. 1.
    Chen, Y., Yang, J., Wang, C., Liu, N.: Multimodal biometrics recognition based on local fusion visual features and variational Bayesian extreme learning machine. Expert Syst. Appl. 64, 93–103 (2016)CrossRefGoogle Scholar
  2. 2.
    Ratha, N.K., Chikkerur, S., Connell, J.H., Bolle, R.M.: Generating cancelable fingerprint templates. IEEE Trans. Pattern Anal. Mach. Intell. 29(4), 561–572 (2007)CrossRefGoogle Scholar
  3. 3.
    Lim, M., Verma, S., Mai, G., Yuen, P.C.: Learning discriminability-preserving histogram representation from unordered features for multibiometric feature-fused-template protection. Pattern Recognit. 60, 706–719 (2016)CrossRefGoogle Scholar
  4. 4.
    Rathgeb, C., Breitinger, F., Busch, C.: Alignment-free cancelable iris biometric templates based on adaptive bloom filters. In: International Conference on Biometrics, Madrid, pp. 1–8. IEEE (2013)Google Scholar
  5. 5.
    Rathgeb, C., Busch, C.: Cancelable multi-biometrics: mixing iris-codes based on adaptive bloom filters. Comput. Secur. 42(4), 1–12 (2014)CrossRefGoogle Scholar
  6. 6.
    Rathgeb, C., Gomez-Barrero, M., Busch, C., Galbally, J., Fierrez, J.: Towards cancelable multi-biometrics based on bloom filters: a case study on feature level fusion of face and iris. In: International Workshop on Biometrics and Forensics, Gjovik, pp. 1–6. IEEE(2015)Google Scholar
  7. 7.
    Gomez-Barrero, M., Rathgeb, C., Galbally, J., Fierrez, J.: Protected facial biometric templates based on local gabor patterns and adaptive bloom filters. In: International Conference on Pattern Recognition, Stockholm, pp. 4483–4488. IEEE (2014)Google Scholar
  8. 8.
    Li, G., Yang, B., Rathgeb, C., Busch, C.: Towards generating protected fingerprint templates based on bloom filters. In: International Workshop on Biometrics and Forensics, Gjovik, pp. 1–6. IEEE (2015)Google Scholar
  9. 9.
    Stokkenes, M., Ramachandra, R., Sigaard, M.K., Raja, K., Gomez-Barrero, M., Busch, C.: Multi-biometric template protection – a security analysis of binarized statistical features for bloom filters on smartphones. In: 2016 Sixth International Conference on Image Processing Theory, Tools and Applications, Oulu, pp. 1–6. IEEE (2016)Google Scholar
  10. 10.
    Sadhya, D., Singh, S.K.: Providing robust security measures to Bloom filter based biometric template protection schemes. Comput. Secur. 67, 59–72 (2017)CrossRefGoogle Scholar
  11. 11.
    Lee, C., Kim, J.: Cancelable fingerprint templates using minutiae-based bit-strings. J. Netw. Comput. Appl. 33(3), 236–246 (2010)CrossRefGoogle Scholar
  12. 12.
    Yang, W., Hu, J., Wang, S., Stojmenovic, M.: An alignment-free fingerprint bio-cryptosystem based on modified Voronoi neighbor structures. Pattern Recognit. 47(3), 1309–1320 (2014)CrossRefGoogle Scholar
  13. 13.
    Sandhya, M., Prasad, M.V.N.K.: k-Nearest Neighborhood Structure (k-NNS) based alignment-free method for fingerprint template protection. In: International Conference on Biometrics, Phuket, pp. 386–393. IEEE (2015)Google Scholar
  14. 14.
    Teoh, A.B.J., Goh, A., Ngo, D.C.L.: Random multispace quantization as an analytic mechanism for biohashing of biometric and random identity inputs. IEEE Trans. Pattern Anal. Mach. Intell. 28(12), 1892–1901 (2006)CrossRefGoogle Scholar
  15. 15.
    Zheng, Y., Cao, Y., Chang, C.H.: Facial biohashing based user-device physical unclonable function for bring your own device security. In: 2018 IEEE International Conference on Consumer Electronics, Las Vegas, pp. 1–6. IEEE (2018)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.College of Communication EngineeringHangzhou Dianzi UniversityHangzhouChina

Personalised recommendations