Advertisement

Smart Grid Power Trading Based on Consortium Blockchain in Internet of Things

  • Dong Zheng
  • Kaixin Deng
  • Yinghui Zhang
  • Jiangfan Zhao
  • Xiaokun Zheng
  • Xinwei Ma
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11336)

Abstract

Internet of Things (IoT) technologies have attracted enormous attention from academics and industries, and one of the most representative application is the smart grid. Most smart grid system models have to rely on trusted third-parties, but there are no trusted third-parties in practice. Blockchain technologies show a lot of advantages in IoT due to its unique characteristics. In this paper, to enable reliability, efficiency, flexibility and security in smart grid trading, we combine blockchain technologies, proof of stake consensus mechanisms and cryptography tools to build a novel smart grid power trading system. Our security analysis shows that the proposed system can protect users’ data privacy.

Keywords

Smart grid Blockchain Smart contracts Internet of Things Energy market 

References

  1. 1.
    Aitzhan, N.Z., Svetinovic, D.: Security and privacy in decentralized energy trading through multi-signatures, blockchain and anonymous messaging streams. IEEE Trans. Dependable Sec. Comput. (2016).  https://doi.org/10.1109/TDSC.2016.2616861CrossRefGoogle Scholar
  2. 2.
    Christidis, K., Devetsikiotis, M.: Blockchains and smart contracts for the internet of things. IEEE Access 4, 2292–2303 (2016)CrossRefGoogle Scholar
  3. 3.
    Crowe, J.: Wannacry ransomware statistics: the numbers behind the outbreak. https://blog.barkly.com/wannacry-ransomeware-statistics-2017/
  4. 4.
    Etemad, R.H., Lahouti, F.: Resilient decentralized consensus-based state estimation for smart grid in presence of false data. In: IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 3466–3470. IEEE (2016)Google Scholar
  5. 5.
    Han, Q., Zhang, Y., Chen, X., Li, H., Quan, J.: Efficient and robust identity-based handoff authentication in wireless networks. In: Xu, L., Bertino, E., Mu, Y. (eds.) NSS 2012. LNCS, vol. 7645, pp. 180–191. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-34601-9_14CrossRefGoogle Scholar
  6. 6.
    Li, J., Zhang, Y., Chen, X., Xiang, Y.: Secure attribute-based data sharing for resource-limited users in cloud computing. Comput. Secur. 72, 1–12 (2018)CrossRefGoogle Scholar
  7. 7.
    Li, Z., Kang, J., Yu, R., Ye, D., Deng, Q., Zhang, Y.: Consortium blockchain for secure energy trading in industrial internet of things. IEEE Trans. Ind. Inform. (2017).  https://doi.org/10.1109/TII.2017.2786307
  8. 8.
    Liu, Y., Zhang, Y., Ling, J., Liu, Z.: Secure and fine-grained access control on e-healthcare records in mobile cloud computing. Future Gener. Comput. Syst. 78, 1020–1026 (2018)CrossRefGoogle Scholar
  9. 9.
    Mahmoud, M.M., Saputro, N., Akula, P.K., Akkaya, K.: Privacy-preserving power injection over a hybrid AMI/LTE smart grid network. IEEE Internet Things J. 4(4), 870–880 (2017)CrossRefGoogle Scholar
  10. 10.
    Mannaro, K., Pinna, A., Marchesi, M.: Crypto-trading: Blockchain-oriented energy market. In: AEIT International Annual Conference, pp. 1–5. IEEE (2017)Google Scholar
  11. 11.
    Mylrea, M., Gourisetti, S.N.G.: Blockchain for smart grid resilience: exchanging distributed energy at speed, scale and security. In: Resilience Week (RWS), pp. 18–23 (2017)Google Scholar
  12. 12.
    Zhang, Y., Zheng, D., Deng, R.H.: Security and privacy in smart health: efficient policy-hiding attribute-based access control. IEEE Internet Things J. 5(3), 2130–2145 (2018)CrossRefGoogle Scholar
  13. 13.
    Zhang, Y., Chen, X., Li, H., Cao, J.: Identity-based construction for secure and efficient handoff authentication schemes in wireless networks. Secur. Commun. Netw. 5(10), 1121–1130 (2012)CrossRefGoogle Scholar
  14. 14.
    Zhang, Y., Chen, X., Li, J., Li, H.: Generic construction for secure and efficient handoff authentication schemes in EAP-based wireless networks. Comput. Netw. 75, 192–211 (2014)CrossRefGoogle Scholar
  15. 15.
    Zhang, Y., Chen, X., Li, J., Li, H., Li, F.: FDR-ABE: attribute-based encryption with flexible and direct revocation. In: International Conference on Intelligent Networking and Collaborative Systems (INCoS), pp. 38–45. IEEE (2013)Google Scholar
  16. 16.
    Zhang, Y., Chen, X., Li, J., Wong, D.S., Li, H.: Anonymous attribute-based encryption supporting efficient decryption test. In: Proceedings of the 8th ACM SIGSAC Symposium on Information, Computer and Communications Security, pp. 511–516. ACM (2013)Google Scholar
  17. 17.
    Zhang, Y., Deng, R.H., Jiangang, S., Kan, Y., Dong, Z.: TKSE: trustworthy keyword search over encrypted data with two-side verifiability via blockchain. IEEE Access 6, 31077–31087 (2018)CrossRefGoogle Scholar
  18. 18.
    Zhang, Y., Deng, R.H., Ximeng, L., Dong, Z.: Blockchain based efficient and robust fair payment for outsourcing services in cloud computing. Inf. Sci. 462, 262–277 (2018)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Zhang, Y., Li, J., Chen, X., Li, H.: Anonymous attribute-based proxy re-encryption for access control in cloud computing. Secur. Commun. Netw. 9(14), 2397–2411 (2016)CrossRefGoogle Scholar
  20. 20.
    Zhang, Y., Zhao, J., Zheng, D.: Efficient and privacy-aware power injection over AMI and smart grid slice in future 5G networks. Mob. Inf. Syst. 2017, 1–11 (2017)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.National Engineering Laboratory for Wireless SecurityXi’an University of Posts and TelecommunicationsXi’anPeople’s Republic of China
  2. 2.Westone Cryptologic Research CenterBeijingChina
  3. 3.School of Computer Science and TechnologyXi’an University of Posts and TelecommunicationsXi’anPeople’s Republic of China

Personalised recommendations