Advertisement

Efficient Algorithms of Parallel Skyline Join over Data Streams

  • Jinchao Zhang
  • JingZi Gu
  • Shuai Cheng
  • Bo Li
  • Weiping Wang
  • Dan Meng
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11334)

Abstract

The issue of finding skyline tuples over multiple relations, more commonly known as the skyline join problem, has been well studied in scenarios in which the data is static. Most recently, it has become a new trend that performing skyline queries on data streams, where tuples arrive or expire in a continuous approach. A few algorithms have been proposed for computing skylines on two data streams. However, those literatures did not consider the inherent parallelism, or employ serial algorithms to solve the skyline query problem, which cannot leverage the multi-core processors. Based on this motivation, in this paper, we address the problem of parallel computing for skyline join over multiple data streams. We developed a Novel Iterative framework based on the existing work and study the inherent parallelism of the Novel Iterative framework. Then we propose two parallel skyline join algorithms over sliding windows, NP-SWJ and IP-SWJ.

To the best of our knowledge, this is the first paper that addresses parallel computing of skyline join over multiple data streams. Extensive experimental evaluations on real and synthetic data sets show that the algorithms proposed in this paper provide large gains over the state-of-the-art serial algorithm of skyline join over data streams.

Keywords

Skyline join Sliding window Data stream parallel computing 

References

  1. 1.
    Asudeh, A., Thirumuruganathan, S., Zhang, N., Das, G.: Discovering the skyline of web databases. Proc. VLDB Endow. 9(7), 600–611 (2016)CrossRefGoogle Scholar
  2. 2.
    Asudeh, A., Zhang, G., Hassan, N., Li, C., Zaruba, G.V.: Crowdsourcing pareto-optimal object finding by pairwise comparisons. In: Proceedings of the 24th ACM International on Conference on Information and Knowledge Management, pp. 753–762. ACM (2015)Google Scholar
  3. 3.
    Borzsony, S., Kossmann, D., Stocker, K.: The skyline operator. In: Proceedings of the 17th International Conference on Data Engineering, pp. 421–430. IEEE (2001)Google Scholar
  4. 4.
    Chomicki, J., Godfrey, P., Gryz, J., Liang, D.: Skyline with presorting. In: Proceedings of the 19th International Conference on Data Engineering, pp. 717–719. IEEE (2003)Google Scholar
  5. 5.
    Das Sarma, A., Lall, A., Nanongkai, D., Xu, J.: Randomized multi-pass streaming skyline algorithms. Proc. VLDB Endow. 2(1), 85–96 (2009)CrossRefGoogle Scholar
  6. 6.
    Emrich, T., Franzke, M., Mamoulis, N., Renz, M., Züfle, A.: Geo-social skyline queries. In: Bhowmick, S.S., Dyreson, C.E., Jensen, C.S., Lee, M.L., Muliantara, A., Thalheim, B. (eds.) DASFAA 2014. LNCS, vol. 8422, pp. 77–91. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-05813-9_6CrossRefGoogle Scholar
  7. 7.
    Hwang, C.L., Masud, A.S.M.: Multiple Objective Decision Making Methods and Applications: A State-of-the-Art Survey, vol. 164. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-45511-7CrossRefGoogle Scholar
  8. 8.
    Ilyas, I.F., Beskales, G., Soliman, M.A.: A survey of top-k query processing techniques in relational database systems. ACM Comput. Surv. (CSUR) 40(4), 11 (2008)CrossRefGoogle Scholar
  9. 9.
    Jin, W., Ester, M., Hu, Z., Han, J.: The multi-relational skyline operator. In: IEEE 23rd International Conference on Data Engineering, ICDE 2007, pp. 1276–1280. IEEE (2007)Google Scholar
  10. 10.
    Jin, W., Morse, M.D., Patel, J.M., Ester, M., Hu, Z.: Evaluating skylines in the presence of equijoins. In: ICDE 2010, pp. 249–260. IEEE (2010)Google Scholar
  11. 11.
    Khalefa, M.E., Mokbel, M.F., Levandoski, J.J.: Prefjoin: an efficient preference-aware join operator. In: ICDE, pp. 995–1006. IEEE (2011)Google Scholar
  12. 12.
    Kossmann, D., Ramsak, F., Rost, S.: Shooting stars in the sky: an online algorithm for skyline queries. In: Proceedings of the 28th International Conference on Very Large Databases, VLDB 2002, pp. 275–286. Elsevier (2002)Google Scholar
  13. 13.
    Liang, W., Chen, B., Yu, J.X.: Energy-efficient skyline query processing and maintenance in sensor networks. In: Proceedings of the 17th ACM Conference on Information and Knowledge Management, pp. 1471–1472. ACM (2008)Google Scholar
  14. 14.
    Lin, X., Yuan, Y., Wang, W., Lu, H.: Stabbing the sky: efficient skyline computation over sliding windows. In: Proceedings of the 21st International Conference on Data Engineering, ICDE 2005, pp. 502–513. IEEE (2005)Google Scholar
  15. 15.
    Nagendra, M., Candan, K.S.: Skyline-sensitive joins with LR-pruning. In: Proceedings of the 15th International Conference on Extending Database Technology, pp. 252–263. ACM (2012)Google Scholar
  16. 16.
    Nagendra, M., Candan, K.S.: Layered processing of skyline-window-join (SWJ) queries using iteration-fabric. In: 2013 IEEE 29th International Conference on Data Engineering (ICDE), pp. 985–996. IEEE (2013)Google Scholar
  17. 17.
    Nagendra, M., Candan, K.S.: Efficient processing of skyline-join queries over multiple data sources. ACM Trans. Database Syst. (TODS) 40(2), 10 (2015)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Pan, L.Q., Li, J.Z., Luo, J.Z.: Approximate skyline query processing algorithm in wireless sensor networks. J. Softw. 21(5), 1020–1030 (2010)CrossRefGoogle Scholar
  19. 19.
    Raghavan, V., Rundensteiner, E., et al.: Progressive result generation for multi-criteria decision support queries. In: ICDE 2010, pp. 733–744. IEEE (2010)Google Scholar
  20. 20.
    Raghavan, V., Rundensteiner, E.A., Srivastava, S.: Skyline and mapping aware join query evaluation. Inf. Syst. 36(6), 917–936 (2011)CrossRefGoogle Scholar
  21. 21.
    Shi, J., Lu, H., Lu, J., Liao, C.: A skylining approach to optimize influence and cost in location selection. In: Bhowmick, S.S., Dyreson, C.E., Jensen, C.S., Lee, M.L., Muliantara, A., Thalheim, B. (eds.) DASFAA 2014. LNCS, vol. 8422, pp. 61–76. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-05813-9_5CrossRefGoogle Scholar
  22. 22.
    Sun, D., Wu, S., Li, J., Tung, A.K.: Skyline-join in distributed databases. In: VLDB Workshop, pp. 176–181. IEEE (2008)Google Scholar
  23. 23.
    Sun, S., Huang, Z., Zhong, H., Dai, D., Liu, H., Li, J.: Efficient monitoring of skyline queries over distributed data streams. Knowl. Inf. Syst. 25(3), 575–606 (2010)CrossRefGoogle Scholar
  24. 24.
    Tao, Y., Papadias, D.: Maintaining sliding window skylines on data streams. IEEE Trans. Knowl. Data Eng. 18(3), 377–391 (2006)CrossRefGoogle Scholar
  25. 25.
    Teja, A.B.B.P.: Aggregate skyline join queries: skylines with aggregate operations over multiple relations. Manag. Data 15 (2010)Google Scholar
  26. 26.
    Vlachou, A., Doulkeridis, C., Polyzotis, N.: Skyline query processing over joins. In: Proceedings SIGMOD 2011, pp. 73–84. ACM (2011)Google Scholar
  27. 27.
    Zhang, J., Lin, Z., Li, B., Wang, W., Meng, D.: Skyline join query processing over multiple relations. In: Gao, H., Kim, J., Sakurai, Y. (eds.) DASFAA 2016. LNCS, vol. 9645, pp. 353–361. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-32055-7_29CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Jinchao Zhang
    • 1
  • JingZi Gu
    • 1
  • Shuai Cheng
    • 1
    • 2
  • Bo Li
    • 1
  • Weiping Wang
    • 1
  • Dan Meng
    • 1
  1. 1.Institute of Information EngineeringChinese Academy of SciencesBeijingChina
  2. 2.University of Chinese Academy of SciencesBeijingChina

Personalised recommendations