Advertisement

Antibiotic Usage in Poultry Production and Antimicrobial-Resistant Salmonella in Poultry

  • Deepak Kumar
  • Suchawan Pornsukarom
  • Siddhartha ThakurEmail author
Chapter
Part of the Food Microbiology and Food Safety book series (FMFS)

Abstract

“Post-antibiotic era” is not an imaginary word anymore and seems to be a real possibility with increased number of bacterial pathogens being reported as multidrug resistant (MDR). Indiscriminate use of antimicrobials in food animals for growth promotion and disease prevention is considered the key driver behind this surge. Increased demand and global acceptability of chicken meat over beef and pork have resulted in rearing of poultry birds in high-density farms, which are often overcrowded. In such farms, sub-therapeutic doses of antibiotics are routinely administered to prevent bacterial infections and to compensate the lack of adequate hygienic conditions. In many parts of the world, “medically important” antibiotics such as fluoroquinolones and cephalosporins constitute the “sub-therapeutic” regimen administered to poultry. Low-dose feeding of antibiotics results in the development of antimicrobial resistant (AMR) pathogens and presents a true risk of such pathogens entering the human food chain either through meat, manure, humans, or water. Transmission of antimicrobial resistance genes (ARGs) to the environment and eventually humans further aggravates the situation. Increased prevalence of antimicrobial-resistant Salmonella poses a severe risk to human health. Higher prevalence of Salmonella associated with chicken meat has been well-documented, and this prevalence has immense human health implications. Multistate outbreaks of Salmonella associated with the consumption of contaminated chicken meat have been reported. Misuse of antimicrobials in the poultry farms contributes to the increased Salmonella prevalence in poultry and poultry products. A One Health approach which includes judicious and unbiased antibiotic prescription in humans, regulated antibiotic use in food animals, and monitoring of antibiotic resistance in environmental reservoirs is needed to counter the threat of AMR in foodborne pathogens. Most countries have regulatory procedures in place for antibiotic usage in farms, but the extent to which it is applied varies markedly among countries. Awareness within countries on the adverse effects of misuse of antimicrobials in food animal production varies from good to negligible. Alternative approaches to control AMR such as improved management practices, wider use of vaccines, and introduction of probiotics are envisaged. However, while there is still a lack of consensus on the contribution of antibiotic usage in food animals to the development of AMR, epidemiological and molecular studies point to a relationship between antimicrobial use and the emergence of resistant bacterial strains in animals, and their spread to humans, via the food chain.

References

  1. Aarestrup, F. M. (2015). The livestock reservoir for antimicrobial resistance: A personal view on changing patterns of risks, effects of interventions and the way forward. Philosophical Transactions of the Royal Society B: Biological Sciences, 370(1670), 20140085.CrossRefGoogle Scholar
  2. Accogli, M., Fortini, D., Giufrè, M., Graziani, C., Dolejska, M., Carattoli, A., et al. (2013). IncI1 plasmids associated with the spread of CMY-2, CTX-M-1 and SHV-12 in Escherichia coli of animal and human origin. Clinical Microbiology and Infection, 19(5), E238.CrossRefPubMedGoogle Scholar
  3. Aguirre, E. (2017). Contagion without relief: Democratic experimentalism and regulating the use of antibiotics in food-producing animals. UCLA Law Review, 64, 550.Google Scholar
  4. Alekshun, M. N., & Levy, S. B. (2007). Molecular mechanisms of antibacterial multidrug resistance. Cell, 128(6), 1037–1050.CrossRefPubMedGoogle Scholar
  5. Belanger, A. (2015). A holistic solution for antibiotic resistance: Phasing out factory farms in order to protect human health. Journal of Health & Biomedical Law, 11, 145.Google Scholar
  6. Berendsen, B. J., Wegh, R. S., Memelink, J., Zuidema, T., & Stolker, L. A. (2015). The analysis of animal faeces as a tool to monitor antibiotic usage. Talanta, 132, 258–268.CrossRefPubMedGoogle Scholar
  7. Bhushan, C., Khurana, A., Sinha, R., & Nagaraju, M. (2017). Antibiotic resistance in poultry environment: Spread of resistance from poultry farm to agricultural field. New Delhi, India: Centre for Science and Environment.Google Scholar
  8. Blair, J. M., Webber, M. A., Baylay, A. J., Ogbolu, D. O., & Piddock, L. J. (2015). Molecular mechanisms of antibiotic resistance. Nature Reviews Microbiology, 13(1), 42–49.CrossRefPubMedGoogle Scholar
  9. Boucher, H. W., Talbot, G. H., Bradley, J. S., Edwards, J. E., Gilbert, D., Rice, L. B., et al. (2009). Bad bugs, no drugs: No ESKAPE! An update from the Infectious Diseases Society of America. Clinical Infectious Diseases, 48(1), 1–12.CrossRefPubMedGoogle Scholar
  10. Branswell, H. (2017). Woman killed by a superbug resistant to every available antibiotic. Retrieved March 2018, from https://www.scientificamerican.com/article/woman-killed-by-a-superbug-resistant-to-every-available-antibiotic/
  11. Brooks C. (2011). Meat’s environmental impact. Stanford Woods: Institute for the Environment. Retrieved March 2018, from https://woods.stanford.edu/news-events/news/meats-environmental-impact
  12. Brower, C. H., Mandal, S., Hayer, S., Sran, M., Zehra, A., Patel, S. J., et al. (2017). The prevalence of extended-spectrum beta-lactamase-producing multidrug-resistant Escherichia coli in poultry chickens and variation according to farming practices in Punjab, India. Environmental Health Perspectives, 125(7), 238–241.CrossRefGoogle Scholar
  13. Casey, J. A., Curriero, F. C., Cosgrove, S. E., Nachman, K. E., & Schwartz, B. S. (2013). High-density livestock operations, crop field application of manure, and risk of community-associated methicillin-resistant Staphylococcus aureus infection in Pennsylvania. JAMA Internal Medicine, 173(21), 1980–1990.CrossRefPubMedPubMedCentralGoogle Scholar
  14. Centers for Disease Control and Prevention (CDC). (2013). Vital signs: Incidence and trends of infection with pathogens transmitted commonly through food – foodborne diseases active surveillance network, 10 U.S. Sites, 1996–2012. Retrieved February 2018, from http://www.cdc.gov/mmwr/preview/mmwrhtml/mm6215a2.htm?s_cid=mm6215a2_w
  15. Centers for Disease Control and Prevention (CDC). (2014). Foodborne disease active surveillance network. Retrieved January 2018, from http://www.cdc.gov/foodnet/trends/2014/number-of-salmonella-infections-by-serotype-2014.html
  16. Centers for Disease Control and Prevention (CDC). (2018). Antibiotic resistance threats in the United States. Retrieved February 2018, from http://www.cdc.gov/drugresistance/threat-report-2013
  17. Chen, W., Fang, T., Zhou, X., Zhang, D., Shi, X., & Shi, C. (2016). IncHI2 plasmids are predominant in antibiotic-resistant Salmonella isolates. Frontiers in Microbiology, 7, 1566.PubMedPubMedCentralGoogle Scholar
  18. Chen, L., Zhang, J., Wang, J., Butaye, P., Kelly, P., Li, M., et al. (2018). Newly identified colistin resistance genes, mcr-4 and mcr-5, from upper and lower alimentary tract of pigs and poultry in China. PLoS One, 13(3), e0193957.CrossRefPubMedPubMedCentralGoogle Scholar
  19. Cook, M. E. (2004). Antibodies: Alternatives to antibiotics in improving growth and feed efficiency. Journal of Applied Poultry Research, 13(1), 106–119.CrossRefGoogle Scholar
  20. Cook, K. L., Netthisinghe, A. M. P., & Gilfillen, R. A. (2014). Detection of pathogens, indicators, and antibiotic resistance genes after land application of poultry litter. Journal of Environmental Quality, 43(5), 1546–1558.CrossRefPubMedGoogle Scholar
  21. Cosby, D. E., Cox, N. A., Harrison, M. A., Wilson, J. L., Buhr, R. J., & Fedorka-Cray, P. J. (2015). Salmonella and antimicrobial resistance in broilers: A review. Journal of Applied Poultry Research, 24(3), 408–426.CrossRefGoogle Scholar
  22. Dall, C. (2017). Pan-resistant CRE reported in Nevada. Retrieved March 2018, from http://www.cidrap.umn.edu/news-perspective/2017/01/pan-resistant-cre-reported-nevada
  23. Davies, J., & Davies, D. (2010). Origins and evolution of antibiotic resistance. Microbiology and Molecular Biology Reviews, 74(3), 417–433.CrossRefPubMedGoogle Scholar
  24. Davies, M., & Meesaraganda, R. (2018). A game of chicken: How India’s poultry farms are spawning global superbugs. Retrieved April 2018, from https://www.thebureauinvestigates.com/stories/2018-01-30/a-game-of-chicken-how-indian-poultry-farming-is-creating-global-superbugs
  25. Davies, M., & Walsh, T. R. (2018). A colistin crisis in India. Lancet Infectious Diseases, 18(3), 256–257.Google Scholar
  26. Dewey-Mattia, D., Manikonda, K., & Vieira, A. (2016). Surveillance for foodborne disease outbreaks–United States, 2014: Annual report. Retrieved March 2018, from https://stacks.cdc.gov/view/cdc/40019
  27. Dhanarani, T. S., Shankar, C., Park, J., Dexilin, M., Kumar, R. R., & Thamaraiselvi, K. (2009). Study on acquisition of bacterial antibiotic resistance determinants in poultry litter. Poultry Science, 88(7), 1381–1387.CrossRefPubMedGoogle Scholar
  28. Diarrassouba, F., Diarra, M. S., Bach, S., Delaquis, P., Pritchard, J., Topp, E., et al. (2007). Antibiotic resistance and virulence genes in commensal Escherichia coli and Salmonella isolates from commercial broiler chicken farms. Journal of Food Protection, 70(6), 1316–1327.CrossRefPubMedGoogle Scholar
  29. Dolejska, M., Villa, L., Hasman, H., Hansen, L., & Carattoli, A. (2013). Characterization of IncN plasmids carrying bla CTX-M-1 and qnr genes in Escherichia coli and Salmonella from animals, the environment and humans. Journal of Antimicrobial Chemotherapy, 68(2), 333–339.CrossRefPubMedGoogle Scholar
  30. Doumith, M., Godbole, G., Ashton, P., Larkin, L., Dallman, T., Day, M., et al. (2016). Detection of the plasmid-mediated mcr-1 gene conferring colistin resistance in human and food isolates of Salmonella enterica and Escherichia coli in England and Wales. Journal of Antimicrobial Chemotherapy, 71(8), 2300–2305.CrossRefPubMedGoogle Scholar
  31. Dutil, L., Irwin, R., Finley, R., Ng, L. K., Avery, B., Boerlin, P., et al. (2010). Ceftiofur resistance in Salmonella enterica serovar Heidelberg from chicken meat and humans, Canada. Emerging Infectious Diseases, 16(1), 48–54.CrossRefPubMedPubMedCentralGoogle Scholar
  32. Dutta, S. S. (2017). India launches strategy to curb antimicrobial resistance. BMJ, 357, j2049.CrossRefPubMedGoogle Scholar
  33. Fernandes, M. R., Sellera, F. P., Esposito, F., Sabino, C. P., Cerdeira, L., & Lincopan, N. (2017). Colistin-resistant mcr-1-positive Escherichia coli on public beaches, an infectious threat emerging in recreational waters. Antimicrobial Agents and Chemotherapy, 61(7), e00234–e00217.CrossRefPubMedPubMedCentralGoogle Scholar
  34. Ferri, M., Ranucci, E., Romagnoli, P., & Giaccone, V. (2017). Antimicrobial resistance: A global emerging threat to public health systems. Critical Reviews in Food Science and Nutrition, 57(13), 2857–2876.CrossRefPubMedGoogle Scholar
  35. Fischer, J., Rodríguez, I., Schmoger, S., Friese, A., Roesler, U., Helmuth, R., et al. (2012). Salmonella enterica subsp. enterica producing VIM-1 carbapenemase isolated from livestock farms. Journal of Antimicrobial Chemotherapy, 68(2), 478–480.CrossRefPubMedGoogle Scholar
  36. Fluit, A. C. (2005). Towards more virulent and antibiotic-resistant Salmonella? FEMS Immunology and Medical Microbiology, 43(1), 1–11.CrossRefPubMedGoogle Scholar
  37. Fluit, A. C., & Schmitz, F. J. (2004). Resistance integrons and super-integrons. Clinical Microbiology and Infection, 10(4), 272–288.CrossRefPubMedGoogle Scholar
  38. Foley, S. L., Nayak, R., Hanning, I. B., Johnson, T. J., Han, J., & Ricke, S. C. (2011). Population dynamics of Salmonella enterica serotypes in commercial egg and poultry production. Applied and Environmental Microbiology, 77(13), 4273–4279.CrossRefPubMedPubMedCentralGoogle Scholar
  39. Food Safety and Inspection Service (FSIS), United States Department of Agriculture (USDA). (2014). A year in review – 2014. Retrieved January 2018, from http://www.fsis.usda.gov/wps/wcm/connect/6f85bdf5-475a-4c15-8060-7d478ed1fd99/FY-2014-Year-in-Review.pdf?MOD=AJPERES
  40. Food Safety and Inspection Service (FSIS), United States Department of Agriculture (USDA). (2015). The FSIS Salmonella action plan: A year one update. Retrieved January 2018, from http://www.fsis.usda.gov/wps/portal/fsis/topics/food-safety-education/get-answers/food-safety-fact-sheets/foodborne-illness-and-disease/salmonella/sap-one-year
  41. Food Safety and Inspection Service (FSIS), United States Department of Agriculture (USDA). (2017). Serotypes profile of Salmonella isolates from meat and poultry products, January 1998 through December 2011. Retrieved February 2018, from https://www.fsis.usda.gov/wps/wcm/connect/3866026a-582d-4f0e-a8ce-851b39c7390f/Salmonella-Serotype-Annual-2014.pdf?MOD=AJPERES
  42. Founou, L. L., Founou, R. C., & Essack, S. Y. (2016). Antibiotic resistance in the food chain: A developing country-perspective. Frontiers in Microbiology, 7, 1881.CrossRefPubMedPubMedCentralGoogle Scholar
  43. Furtula, V., Jackson, C. R., Farrell, E. G., Barrett, J. B., Hiott, L. M., & Chambers, P. A. (2013). Antimicrobial resistance in Enterococcus spp. isolated from environmental samples in an area of intensive poultry production. International Journal of Environmental Research and Public Health, 10(3), 1020–1036.CrossRefPubMedPubMedCentralGoogle Scholar
  44. Gao, L., Hu, J., Zhang, X., Ma, R., Gao, J., Li, S., et al. (2014). Dissemination of ESBL-producing Escherichia coli of chicken origin to the nearby river water. Journal of Molecular Microbiology and Biotechnology, 24(4), 279–285.CrossRefPubMedGoogle Scholar
  45. Gao, R., Hu, Y., Li, Z., Sun, J., Wang, Q., Lin, J., et al. (2016). Dissemination and mechanism for the MCR-1 colistin resistance. PLoS Pathogens, 12(11), e1005957.CrossRefPubMedPubMedCentralGoogle Scholar
  46. Grimont, P. A., & Weill, F. X. (2007). Antigenic formulae of the Salmonella serovars. WHO Collaborating Centre for Reference and Research on Salmonella, 9, 110–166.Google Scholar
  47. Guenther, S., Falgenhauer, L., Semmler, T., Imirzalioglu, C., Chakraborty, T., Roesler, U., et al. (2017). Environmental emission of multiresistant Escherichia coli carrying the colistin resistance gene mcr-1 from German swine farms. Journal of Antimicrobial Chemotherapy, 72(5), 1289–1292.CrossRefPubMedGoogle Scholar
  48. Guibourdenche, M., Roggentin, P., Mikoleit, M., Fields, P. I., Bockemühl, J., Grimont, P. A., et al. (2010). Supplement 2003–2007 (No. 47) to the white-Kauffmann-Le minor scheme. Research in Microbiology, 161(1), 26–29.CrossRefPubMedGoogle Scholar
  49. Helmuth, R. (2000). Antibiotic resistance in Salmonella. In C. Wray & A. Wray (Eds.), Salmonella in domestic animals (Vol. 1, pp. 89–106). New York: CABI Publishing.CrossRefGoogle Scholar
  50. Hembach, N., Schmid, F., Alexander, J., Hiller, C., Rogall, E. T., & Schwartz, T. (2017). Occurrence of the mcr-1 colistin resistance gene and other clinically relevant antibiotic resistance genes in microbial populations at different municipal wastewater treatment plants in Germany. Frontiers in Microbiology, 8, 1282–1292.CrossRefPubMedPubMedCentralGoogle Scholar
  51. Hribar, C., & Schultz, M. (2010). Understanding concentrated animal feeding operations and their impact on communities. Bowling Green, OH: National Association of Local Boards of Health. Retrieved February, 18, 2013.Google Scholar
  52. Hruby, C. E., Soupir, M. L., Moorman, T. B., Pederson, C., & Kanwar, R. (2018). Salmonella and fecal indicator bacteria survival in soils amended with poultry manure. Water, Air, & Soil Pollution, 229(2), 32–40.CrossRefGoogle Scholar
  53. Humphrey, T. J., Jørgensen, F., Frost, J. A., Wadda, H., Domingue, G., Elviss, N. C., et al. (2005). Prevalence and subtypes of ciprofloxacin-resistant Campylobacter spp. in commercial poultry flocks before, during, and after treatment with fluoroquinolones. Antimicrobial Agents and Chemotherapy, 49(2), 690–698.CrossRefPubMedPubMedCentralGoogle Scholar
  54. Hur, J., Jawale, C., & Lee, J. H. (2012). Antimicrobial resistance of Salmonella isolated from food animals: A review. Food Research International, 45(2), 819–830.CrossRefGoogle Scholar
  55. Interagency Food Safety Analytics Collaboration (IFSAC) Project. (2015). Estimates for Salmonella, Escherichia coli O157 (E. coli O157), Listeria monocytogenes (Lm), and Campylobacter using Outbreak Surveillance Data. Retrieved February 2018, from http://www.cdc.gov/foodsafety/pdfs/ifsac-project-report-508c.pdf
  56. Jackson, B. R., Griffin, P. M., Cole, D., Walsh, K. A., & Chai, S. J. (2013). Outbreak-associated Salmonella enterica serotypes and food commodities, United States, 1998–2008. Emerging Infectious Diseases, 19(8), 1239–1244.CrossRefPubMedPubMedCentralGoogle Scholar
  57. Keelara, S., Scott, H. M., Morrow, W. M., Gebreyes, W. A., Correa, M., Nayak, R., et al. (2013). Longitudinal study of distributions of similar antimicrobial-resistant Salmonella serovars in pigs and their environment in two distinct swine production systems. Applied and Environmental Microbiology, 79(17), 5167–5178.CrossRefPubMedPubMedCentralGoogle Scholar
  58. Kniel, K. E., Kumar, D., & Thakur, S. (2018). Understanding the complexities of food safety using a “one health” approach. Microbiology Spectrum, 6(1), PFS-0021-2017.CrossRefGoogle Scholar
  59. Kumar, D., Pornsukarom, S., Sivaraman, G. K., & Thakur, S. (2018). Environmental dissemination of multidrug methicillin-resistant Staphylococcus sciuri after application of manure from commercial swine production systems. Foodborne Pathogens and Disease, 15(4), 210–217.CrossRefPubMedGoogle Scholar
  60. Landers, T. F., Cohen, B., Wittum, T. E., & Larson, E. L. (2012). A review of antibiotic use in food animals: Perspective, policy, and potential. Public Health Reports, 127(1), 4–22.CrossRefPubMedPubMedCentralGoogle Scholar
  61. Lee, M. D., Sanchez, S., Zimmer, M., Idris, U., Berrang, M. E., & McDermott, P. F. (2002). Class 1 integron-associated tobramycin-gentamicin resistance in Campylobacter jejuni isolated from the broiler chicken house environment. Antimicrobial Agents and Chemotherapy, 46(11), 3660–3664.CrossRefPubMedPubMedCentralGoogle Scholar
  62. Lertworapreecha, M., Sutthimusik, S., & Tontikapong, K. (2012). Antimicrobial resistance in Salmonella enterica isolated from pork, chicken, and vegetables in southern Thailand. Jundishapur Journal of Microbiology, 6(1), 36–41.CrossRefGoogle Scholar
  63. Levy, S. B., & Marshall, B. (2004). Antibacterial resistance worldwide: Causes, challenges and responses. Nature Medicine, 10(12 Suppl), S122.CrossRefPubMedGoogle Scholar
  64. Li, R., Lai, J., Wang, Y., Liu, S., Li, Y., Liu, K., et al. (2013). Prevalence and characterization of Salmonella species isolated from pigs, ducks and chickens in Sichuan Province, China. International Journal of Food Microbiology, 163(1), 14–18.CrossRefPubMedGoogle Scholar
  65. Liljebjelke, K. A., Hofacre, C. L., White, D. G., Ayers, S., Lee, M. D., & Maurer, J. J. (2017). Diversity of antimicrobial resistance phenotypes in Salmonella isolated from commercial poultry farms. Frontiers in Veterinary Science, 4, 96–104.CrossRefPubMedPubMedCentralGoogle Scholar
  66. Liu, Y. Y., Wang, Y., Walsh, T. R., Yi, L. X., Zhang, R., Spencer, J., et al. (2016). Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: A microbiological and molecular biological study. The Lancet Infectious Diseases, 16(2), 161–168.CrossRefPubMedGoogle Scholar
  67. Marti, R., Scott, A., Tien, Y. C., Murray, R., Sabourin, L., Zhang, Y., et al. (2013). Impact of manure fertilization on the abundance of antibiotic-resistant bacteria and frequency of detection of antibiotic resistance genes in soil and on vegetables at harvest. Applied and Environmental Microbiology, 79(18), 5701–5709.CrossRefPubMedPubMedCentralGoogle Scholar
  68. Mattiello, S. P., Drescher, G., Barth, V. C., Ferreira, C. A., & Oliveira, S. D. (2015). Characterization of antimicrobial resistance in Salmonella enterica strains isolated from Brazilian poultry production. Antonie Van Leeuwenhoek, 108(5), 1227–1238.CrossRefPubMedGoogle Scholar
  69. McCollister, B., Kotter, C. V., Frank, D. N., Washburn, T., & Jobling, M. G. (2016). Whole-genome sequencing identifies in vivo acquisition of a blaCTX-M-27-carrying IncFII transmissible plasmid as the cause of ceftriaxone treatment failure for an invasive Salmonella enterica serovar typhimurium infection. Antimicrobial Agents and Chemotherapy, 60(12), 7224–7235.PubMedPubMedCentralGoogle Scholar
  70. McDermott, P. F., Bodeis, S. M., English, L. L., White, D. G., Walker, R. D., Zhao, S., et al. (2002). Ciprofloxacin resistance in Campylobacter jejuni evolves rapidly in chickens treated with fluoroquinolones. The Journal of Infectious Diseases, 185(6), 837–840.CrossRefPubMedGoogle Scholar
  71. Mollenkopf, D. F., Stull, J. W., Mathys, D. A., Bowman, A. S., Feicht, S. M., Grooters, S. V., et al. (2017). Carbapenemase-producing Enterobacteriaceae recovered from the environment of a swine farrow-to-finish operation in the United States. Antimicrobial Agents and Chemotherapy, 61(2), e01298–e01216.PubMedPubMedCentralGoogle Scholar
  72. Mulvey, M. R., Boyd, D. A., Olson, A. B., Doublet, B., & Cloeckaert, A. (2006). The genetics of Salmonella genomic island 1. Microbes and Infection, 8(7), 1915–1922.CrossRefPubMedGoogle Scholar
  73. Nandi, S., Maurer, J. J., Hofacre, C., & Summers, A. O. (2004). Gram-positive bacteria are a major reservoir of Class 1 antibiotic resistance integrons in poultry litter. Proceedings of the National Academy of Sciences, 101(18), 7118–7122.CrossRefGoogle Scholar
  74. Nhung, N. T., Cuong, N. V., Thwaites, G., & Carrique-Mas, J. (2016). Antimicrobial usage and antimicrobial resistance in animal production in Southeast Asia: A review. Antibiotics, 5(4), 37–45.CrossRefPubMedCentralGoogle Scholar
  75. Ovejero, C. M., Delgado-Blas, J. F., Calero-Caceres, W., Muniesa, M., & Gonzalez-Zorn, B. (2017). Spread of mcr-1-carrying Enterobacteriaceae in sewage water from Spain. Journal of Antimicrobial Chemotherapy, 72(4), 1050–1053.PubMedPubMedCentralGoogle Scholar
  76. Padungtod, P., & Kaneene, J. B. (2006). Salmonella in food animals and humans in northern Thailand. International Journal of Food Microbiology, 108(3), 346–354.PubMedGoogle Scholar
  77. Papadopoulos, T., Petridou, E., Zdragas, A., Nair, S., Peters, T., de Pinna, E., et al. (2015). Phenotypic and molecular characterization of multidrug-resistant Salmonella enterica serovar Hadar in Greece, from 2007 to 2010. Clinical Microbiology and Infection, 21(2), 149–1e1.CrossRefPubMedGoogle Scholar
  78. Pornsukarom, S., & Thakur, S. (2017). Horizontal dissemination of antimicrobial resistance determinants in multiple Salmonella serotypes following isolation from the commercial swine operation environment after manure application. Applied and Environmental Microbiology, 83(20), e01503–e01517.CrossRefPubMedPubMedCentralGoogle Scholar
  79. Rinsky, J. L., Nadimpalli, M., Wing, S., Hall, D., Baron, D., Price, L. B., et al. (2013). Livestock-associated methicillin and multidrug resistant Staphylococcus aureus is present among industrial, not antibiotic-free livestock operation workers in North Carolina. PLoS One, 8(7), e67641.CrossRefPubMedPubMedCentralGoogle Scholar
  80. Roberts, R. R., Hota, B., Ahmad, I., Scott, R. D., Foster, S. D., Abbasi, F., et al. (2009). Hospital and societal costs of antimicrobial-resistant infections in a Chicago teaching hospital: Implications for antibiotic stewardship. Clinical Infectious Diseases, 49(8), 1175–1184.CrossRefPubMedGoogle Scholar
  81. Rossi, F., Girardello, R., Morais, C., Cury, A. P., Martins, L. F., da Silva, A. M., et al. (2017). Plasmid-mediated mcr-1 in carbapenem-susceptible Escherichia coli ST156 causing a blood infection: An unnoticeable spread of colistin resistance in Brazil? Clinics, 72(10), 642–644.CrossRefPubMedPubMedCentralGoogle Scholar
  82. Rouger, A., Tresse, O., & Zagorec, M. (2017). Bacterial contaminants of poultry meat: Sources, species, and dynamics. Microorganisms, 5(3), 50–58.CrossRefPubMedCentralGoogle Scholar
  83. Shah, D. H., Paul, N. C., Sischo, W. C., Crespo, R., & Guard, J. (2017). Population dynamics and antimicrobial resistance of the most prevalent poultry-associated Salmonella serotypes. Poultry Science, 96(3), 687–702.PubMedGoogle Scholar
  84. Sims, L. D. (2008, November). Risks associated with poultry production systems. In International conference poultry in the twenty-first century (pp. 19–23).Google Scholar
  85. Singer, R. S., & Hofacre, C. L. (2006). Potential impacts of antibiotic use in poultry production. Avian Diseases, 50(2), 161–172.CrossRefPubMedGoogle Scholar
  86. Sinwat, N., Angkittitrakul, S., & Chuanchuen, R. (2015). Characterization of antimicrobial resistance in Salmonella enterica isolated from pork, chicken meat, and humans in Northeastern Thailand. Foodborne Pathogens and Disease, 12(9), 759–765.CrossRefPubMedGoogle Scholar
  87. Skariyachan, S., Setlur, A. S., & Naik, S. Y. (2016). Evolution and prevalence of multidrug resistance among foodborne pathogens. In Food borne pathogens and antibiotic resistance. Hoboken, NJ: Wiley.Google Scholar
  88. Smith, K. E., Besser, J. M., Hedberg, C. W., Leano, F. T., Bender, J. B., Wicklund, J. H., et al. (1999). Quinolone-resistant Campylobacter jejuni infections in Minnesota, 1992–1998. New England Journal of Medicine, 340(20), 1525–1532.CrossRefPubMedGoogle Scholar
  89. Thai, T. H., & Yamaguchi, R. (2012). Molecular characterization of antibiotic-resistant Salmonella isolates from retail meat from markets in Northern Vietnam. Journal of Food Protection, 75(9), 1709–1714.CrossRefPubMedGoogle Scholar
  90. Thai, T. H., Hirai, T., Lan, N. T., & Yamaguchi, R. (2012). Antibiotic resistance profiles of Salmonella serovars isolated from retail pork and chicken meat in North Vietnam. International Journal of Food Microbiology, 156(2), 147–151.CrossRefPubMedGoogle Scholar
  91. Thanner, S., Drissner, D., & Walsh, F. (2016). Antimicrobial resistance in agriculture. MBio, 7(2), e02227–e02215.CrossRefPubMedPubMedCentralGoogle Scholar
  92. The Pew Charitable Trusts. (2013). The business of broilers: Hidden costs of putting a chicken on every grill. Retrieved March 2018, from http://www.pewtrusts.org/en/research-and-analysis/reports/2013/12/20/the-business-of-broilers-hidden-costs-of-putting-a-chicken-on-every-grill
  93. Unicomb, L., Ferguson, J., Riley, T. V., & Collignon, P. (2003). Fluoroquinolone resistance in Campylobacter absent from isolates, Australia. Emerging Infectious Diseases, 9(11), 1482–1483.CrossRefPubMedPubMedCentralGoogle Scholar
  94. Van Boeckel, T. P., Gandra, S., Ashok, A., Caudron, Q., Grenfell, B. T., Levin, S. A., et al. (2014). Global antibiotic consumption 2000 to 2010: An analysis of national pharmaceutical sales data. The Lancet Infectious Diseases, 14(8), 742–750.CrossRefPubMedGoogle Scholar
  95. Van Boeckel, T. P., Brower, C., Gilbert, M., Grenfell, B. T., Levin, S. A., Robinson, T. P., et al. (2015). Global trends in antimicrobial use in food animals. Proceedings of the National Academy of Sciences, 112(18), 5649–5654.CrossRefGoogle Scholar
  96. Van, T. T. H., Nguyen, H. N. K., Smooker, P. M., & Coloe, P. J. (2012). The antibiotic resistance characteristics of non-typhoidal Salmonella enterica isolated from food-producing animals, retail meat and humans in South East Asia. International Journal of Food Microbiology, 154(3), 98–106.CrossRefPubMedGoogle Scholar
  97. Ventola, C. L. (2015). The antibiotic resistance crisis: Part 1: Causes and threats. Pharmacy and Therapeutics, 40(4), 277–283.PubMedPubMedCentralGoogle Scholar
  98. von Wintersdorff, C. J., Penders, J., van Niekerk, J. M., Mills, N. D., Majumder, S., van Alphen, L. B., et al. (2016). Dissemination of antimicrobial resistance in microbial ecosystems through horizontal gene transfer. Frontiers in Microbiology, 7, 173.Google Scholar
  99. Walsh, C. (2010). The problem of antimicrobial resistance in the food chain. Retrieved April 2018, from https://arrow.dit.ie/cgi/viewcontent.cgi?article=1007&context=schfsehrep
  100. Wang, R., Dorp, L., Shaw, L. P., Bradley, P., Wang, Q., Wang, X., et al. (2018). The global distribution and spread of the mobilized colistin resistance gene mcr-1. Nature Communications, 9(1), 1179.  https://doi.org/10.1038/s41467-018-03205-z CrossRefPubMedPubMedCentralGoogle Scholar
  101. Warnes, S. L., Highmore, C. J., & Keevil, C. W. (2012). Horizontal transfer of antibiotic resistance genes on abiotic touch surfaces: Implications for public health. MBio, 3(6), e00489–e00412.CrossRefPubMedPubMedCentralGoogle Scholar
  102. Wellington, E. M., Boxall, A. B., Cross, P., Feil, E. J., Gaze, W. H., Hawkey, P. M., et al. (2013). The role of the natural environment in the emergence of antibiotic resistance in gram-negative bacteria. The Lancet Infectious Diseases, 13(2), 155–165.CrossRefPubMedGoogle Scholar
  103. White, D. G., Zhao, S., Simjee, S., Wagner, D. D., & McDermott, P. F. (2002). Antimicrobial resistance of foodborne pathogens. Microbes and Infection, 4(4), 405–412.CrossRefPubMedGoogle Scholar
  104. World Economic Forum. (2014). Global risks 2014, ninth edition. Retrieved February 2018, from http://www3.weforum.org/docs/WEF_GlobalRisks_Report_2014.pdf
  105. Yang, B., Cui, Y., Shi, C., Wang, J., Xia, X., Xi, M., et al. (2014). Counts, serotypes, and antimicrobial resistance of Salmonella isolates on retail raw poultry in the People’s Republic of China. Journal of Food Protection, 77(6), 894–902.CrossRefPubMedGoogle Scholar
  106. Yang, Y. Q., Li, Y. X., Lei, C. W., Zhang, A. Y., & Wang, H. N. (2018). Novel plasmid-mediated colistin resistance gene mcr-7.1 in Klebsiella pneumoniae. Journal of Antimicrobial Chemotherapy, 73, 1791.CrossRefPubMedGoogle Scholar
  107. Yildirim, Y., Gonulalan, Z., Pamuk, S., & Ertas, N. (2011). Incidence and antibiotic resistance of Salmonella spp. on raw chicken carcasses. Food Research International, 44(3), 725–728.CrossRefGoogle Scholar
  108. Young, I., Rajić, A., Wilhelm, B. J., Waddell, L., Parker, S., & McEwen, S. A. (2009). Comparison of the prevalence of bacterial enteropathogens, potentially zoonotic bacteria and bacterial resistance to antimicrobials in organic and conventional poultry, swine and beef production: A systematic review and meta-analysis. Epidemiology and Infection, 137(9), 1217–1232.CrossRefPubMedGoogle Scholar
  109. Zhu, Y. G., Johnson, T. A., Su, J. Q., Qiao, M., Guo, G. X., Stedtfeld, R. D., et al. (2013). Diverse and abundant antibiotic resistance genes in Chinese swine farms. Proceedings of the National Academy of Sciences, 110(9), 3435–3440.CrossRefGoogle Scholar
  110. Zurfuh, K., Poirel, L., Nordmann, P., Nüesch-Inderbinen, M., Hächler, H., & Stephan, R. (2016). Occurrence of the plasmid-borne mcr-1 colistin resistance gene in extended-spectrum-β-lactamase-producing Enterobacteriaceae in river water and imported vegetable samples in Switzerland. Antimicrobial Agents and Chemotherapy, 60(4), 2594–2595.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Deepak Kumar
    • 1
  • Suchawan Pornsukarom
    • 2
  • Siddhartha Thakur
    • 3
    • 4
    Email author
  1. 1.Department of Diagnostic Medicine/PathobiologyCollege of Veterinary Medicine, Kansas State UniversityManhattanUSA
  2. 2.Faculty of Veterinary MedicineRajamangala University of Technology Tawan-okBangphraThailand
  3. 3.Department of Population Health and Pathobiology, College of Veterinary MedicineNorth Carolina State UniversityRaleighUSA
  4. 4.Comparative Medicine InstituteNorth Carolina State UniversityRaleighUSA

Personalised recommendations