Advertisement

Reducing Foodborne Pathogens in Organic Poultry: Challenges and Opportunities

  • Komala Arsi
  • Dan J. Donoghue
  • Kumar Venkitanarayanan
  • Ann M. DonoghueEmail author
Chapter
Part of the Food Microbiology and Food Safety book series (FMFS)

Abstract

Organic poultry production is becoming increasingly popular in the United States with a steady increase in the sales of organic meat and poultry. Although organic food products may represent a safer alternative with regards to chemical contamination of the product, control of foodborne pathogens in organic poultry is particularly important because consumers of these products perceive them as being safer and choose them for children, the elderly and immunocompromised people. Salmonella and Campylobacter are two major foodborne pathogens epidemiologically linked to the consumption of chicken and eggs which together account for most of the laboratory-confirmed cases of bacterial gastroenteritis in the United States. Although the conventional poultry industry is equipped with several interventions to control these pathogens on meat and eggs, organic poultry producers have access to only a limited number of antibacterials (eg. weak organic acids, chlorine, oxidizing compounds) that are safe, effective and approved for improving the product safety and shelf-life of poultry meat and/or eggs. This is a concern for organic producers because they cannot control proper cooking and other food safety practices of consumers once the poultry products are sold. This chapter discusses the food safety challenges and potential strategies to reduce pathogens both in preharvest and postharvest conditions while conforming to organically approved methods.

References

  1. Aguiar, V. F., Donoghue, A. M., Arsi, K., Reyes-Herrera, I., Metcalf, J. H., de los Santos, F. S., et al. (2013). Targeting motility properties of bacteria in the development of probiotic cultures against Campylobacter jejuni in broiler chickens. Foodborne Pathogens and Disease, 10(5), 435–441.PubMedCrossRefGoogle Scholar
  2. Andreatti Filho, R. L., Silva, E. N. D., Ribeiro, A. R., Kondo, N., & Curi, P. R. (2000). Use of anaerobic cecal microflora, lactose and acetic acid for the protection of broiler chicks against experimental infection with Salmonella typhimurium and Salmonella enteritidis. Brazilian Journal of Microbiology, 31(2), 107–112.CrossRefGoogle Scholar
  3. Andrews, H. L., & Baumler, A. J. (2005). Salmonella species. In P. M. Fratamico, A. K. Bhunia, & J. L. Smith (Eds.), Foodborne pathogens: Microbiology and molecular biology (pp. 327–339). Norfolk, UK: Caister Academic Press.Google Scholar
  4. Anonymous. (2011). Six ill in Minnesota Salmonella egg outbreak. Retrieved October 2017, from http://www.foodsafetynews.com/2011/10/six-ill-in-minnesota-salmonella-egg-outbreak/#.WH1CgVMrIUY
  5. Anonymous. (2014). Organic eggs recalled for Salmonella. Retrieved October 2017, from https://foodpoisoningbulletin.com/2014/organic-eggs-recalled-for-salmonella/
  6. Anonymous. (2016). Good earth eggs recalled; linked to Salmonella outbreak. Retrieved October 2017, from https://foodpoisoningbulletin.com/2016/good-earth-eggs-recalled-linked-to-salmonella-outbreak/
  7. Arsi, K., Donoghue, A. M., Venkitanarayanan, K., Kollanoor-Johny, A., Fanatico, A. C., Blore, P. J., et al. (2014). The efficacy of the natural plant extracts, thymol and carvacrol against Campylobacter colonization in broiler chickens. Journal of Food Safety, 34(4), 321–325.CrossRefGoogle Scholar
  8. Arsi, K., Donoghue, A. M., Woo-Ming, A., Blore, P. J., & Donoghue, D. J. (2015a). The efficacy of selected probiotic and prebiotic combinations in reducing Campylobacter colonization in broiler chickens. Journal of Applied Poultry Research, 24(3), 327–334.CrossRefGoogle Scholar
  9. Arsi, K., Donoghue, A. M., Woo-Ming, A., Blore, P. J., & Donoghue, D. J. (2015b). Intracloacal inoculation, an effective screening method for determining the efficacy of probiotic bacterial isolates against Campylobacter colonization in broiler chickens. Journal of Food Protection, 78(1), 209–213.PubMedCrossRefGoogle Scholar
  10. Arsi, K., Donoghue, A. M., Upadhyaya, I., Upadhyay, A., Wagle, B. R., Shrestha, S., et al. (2017). Alternatives to antibiotics: Novel strategies to reduce foodborne pathogens in organic poultry. In: Proceedings of the Midwest poultry federation convention. Google Scholar
  11. Ayoola, G. A., Lawore, F. M., Adelowotan, T., Aibinu, I. E., Adenipekun, E., Coker, H. A. B., et al. (2008). Chemical analysis and antimicrobial activity of the essential oil of Syzygium aromaticum (clove). African Journal of Microbiology Research, 2(7), 162–166.Google Scholar
  12. Bailey, J. S., & Cosby, D. E. (2005). Salmonella prevalence in free-range and certified organic chickens. Journal of Food Protection, 68(11), 2451–2453.PubMedCrossRefGoogle Scholar
  13. Barrow, P. A. (1992). Probiotics for chickens. In R. Fuller (Ed.), Probiotics: The scientific basis (pp. 225–257). London: Chapman and Hall.CrossRefGoogle Scholar
  14. Baskaran, S. A., Upadhyay, A., Kollanoor-Johny, A., Upadhyaya, I., Mooyottu, S., Roshni Amalaradjou, M. A., et al. (2013). Efficacy of plant-derived antimicrobials as antimicrobial wash treatments for reducing enterohemorrhagic Escherichia Coli O157:H7 on apples. Journal of Food Science, 78(9), M1399.PubMedCrossRefGoogle Scholar
  15. Baskaran, S. A., Kollanoor-Johny, A., Nair, M. S., & Venkitanarayanan, K. (2016). Efficacy of plant-derived antimicrobials in controlling enterohemorrhagic Escherichia coli virulence in vitro. Journal of Food Protection, 79(11), 1965–1970.PubMedCrossRefGoogle Scholar
  16. Baurhoo, B., Letellier, A., Zhao, X., & Ruiz-Feria, C. A. (2007a). Cecal populations of Lactobacilli and Bifidobacteria and Escherichia coli populations after in vivo Escherichia coli challenge in birds fed diets with purified lignin or mannanoligosaccharides. Poultry Science, 86(12), 2509–2516.PubMedCrossRefGoogle Scholar
  17. Baurhoo, B., Phillip, L., & Ruiz-Feria, C. A. (2007b). Effects of purified lignin and mannan oligosaccharides on intestinal integrity and microbial populations in the ceca and litter of broiler chickens. Poultry Science, 86(6), 1070–1078.PubMedCrossRefGoogle Scholar
  18. Baurhoo, B., Ferket, P. R., & Zhao, X. (2009). Effects of diets containing different concentrations of mannanoligosaccharide or antibiotics on growth performance, intestinal development, cecal and litter microbial populations, and carcass parameters of broilers. Poultry Science, 88(11), 2262–2272.PubMedCrossRefGoogle Scholar
  19. Beretz, A., Anton, R., & Stoclet, J. C. (1978). Flavonoid compounds are potent inhibitors of cyclic AMP phosphodiesterase. Cellular and Molecular Life Sciences, 34(8), 1054–1055.CrossRefGoogle Scholar
  20. Berg, C. (2002). Health and welfare in organic poultry production. Acta Veterinaria Scandinavica, 43(1), S37.CrossRefGoogle Scholar
  21. Bergsson, G., Arnfinnsson, J., Karlsson, S. M., Steingrímsson, Ó., & Thormar, H. (1998). In vitro inactivation of Chlamydia trachomatis by fatty acids and monoglycerides. Antimicrobial Agents and Chemotherapy, 42(9), 2290–2294.PubMedPubMedCentralCrossRefGoogle Scholar
  22. Blaszyk, M., & Holley, R. A. (1998). Interaction of monolaurin, eugenol and sodium citrate on growth of common meat spoilage and pathogenic organisms. International Journal of Food Microbiology, 39(3), 175–183.PubMedCrossRefGoogle Scholar
  23. Bowles, B. L., & Miller, A. J. (1993). Antibotulinal properties of selected aromatic and aliphatic ketones. Journal of Food Protection, 56(9), 795–800.CrossRefGoogle Scholar
  24. Brown, L. G., Khargonekar, S., Bushnell, L., & Environmental Health Specialists Network Working Group. (2013). Frequency of inadequate chicken cross-contamination prevention and cooking practices in restaurants. Journal of Food Protection, 76(12), 2141–2145.PubMedCentralCrossRefGoogle Scholar
  25. Brul, S., & Coote, P. (1999). Preservative agents in foods: Mode of action and microbial resistance mechanisms. International Journal of Food Microbiology, 50(1), 1–17.PubMedCrossRefGoogle Scholar
  26. Burley, H. K., Patterson, P. H., & Anderson, K. E. (2015). Alternative ingredients for providing adequate methionine in organic poultry diets in the United States with limited synthetic amino acid use. World’s Poultry Science Journal, 71(3), 493–504.CrossRefGoogle Scholar
  27. Burt, S. (2004). Essential oils: Their antibacterial properties and potential applications in foods—A review. International Journal of Food Microbiology, 94(3), 223–253.PubMedCrossRefGoogle Scholar
  28. CDC. (2015). Centers for Disease Control and Prevention. Food safety – Foodborne germs and illnesses. Retrieved October 2017, from https://www.cdc.gov/foodsafety/foodborne-germs.html
  29. CDC. (2017a). Centers for Disease Control and Prevention. Campylobacter, Salmonella led bacterial foodborne illnesses in 2016. Retrieved October 2017, from https://www.cdc.gov/media/releases/2017/p0420-campylobacter-salmonella.html
  30. CDC. (2017b). Centers for Disease Control and Prevention. Salmonella: Multistate outbreaks of human Salmonella infections linked to live poultry in backyard flocks, 2017. Retrieved October 2017, from https://www.cdc.gov/salmonella/live-poultry-06-17/index.html
  31. Chaveerach, P., Keuzenkamp, D. A., Urlings, H. A., Lipman, L. J., & Van Knapen, F. (2002). In vitro study on the effect of organic acids on Campylobacter jejuni/coli populations in mixtures of water and feed. Poultry Science, 81(5), 621–628.PubMedCrossRefGoogle Scholar
  32. Chaveerach, P., Lipman, L. J. A., & Van Knapen, F. (2004). Antagonistic activities of several bacteria on in vitro growth of 10 strains of Campylobacter jejuni/coli. International Journal of Food Microbiology, 90(1), 43–50.PubMedCrossRefGoogle Scholar
  33. Cobanoglu, F., Kucukyilmaz, K., Cinar, M., Bozkurt, M., Catli, A. U., & Bintas, E. (2014). Comparing the profitability of organic and conventional broiler production. Revista Brasileira de Ciência Avícola, 16(1), 89–95.CrossRefGoogle Scholar
  34. Corrier, D. E., Hinton Jr., A., Ziprin, R. L., & DeLoach, J. R. (1990a). Effect of dietary lactose on Salmonella colonization of market-age broiler chickens. Avian Diseases, 34, 668–676.PubMedCrossRefGoogle Scholar
  35. Corrier, D. E., Hinton Jr., A., Ziprin, R. L., Beier, R. C., & DeLoach, J. R. (1990b). Effect of dietary lactose on cecal pH, bacteriostatic volatile fatty acids, and Salmonella typhimurium colonization of broiler chicks. Avian Diseases, 34, 617–625.PubMedCrossRefGoogle Scholar
  36. Cox, S. D., & Markham, J. L. (2007). Susceptibility and intrinsic tolerance of Pseudomonas aeruginosa to selected plant volatile compounds. Journal of Applied Microbiology, 103(4), 930–936.PubMedCrossRefGoogle Scholar
  37. Cui, S., Ge, B., Zheng, J., & Meng, J. (2005). Prevalence and antimicrobial resistance of Campylobacter spp. and Salmonella serovars in organic chickens from Maryland retail stores. Applied and Environmental Microbiology, 71(7), 4108–4111.PubMedPubMedCentralCrossRefGoogle Scholar
  38. Darre, M. J., Kollanoor-Johny, A., Venkitanarayanan, K., & Upadhyaya, I. (2014). Practical implications of plant-derived antimicrobials in poultry diets for the control of Salmonella enteritidis. Journal of Applied Poultry Research, 23(2), 340–344.CrossRefGoogle Scholar
  39. DeLoach, J. R., Oyofo, B. A., Corrier, D. E., Kubena, L. F., Ziprin, R. L., & Norman, J. O. (1990). Reduction of Salmonella typhimurium concentration in broiler chickens by milk or whey. Avian Diseases, 34, 389–392.PubMedCrossRefGoogle Scholar
  40. Donato, F., & Zani, C. (2010). Chronic exposure to organochlorine compounds and health effects in adults: Cancer, non-Hodgkin lymphoma. Review of literature. Annali di Igiene: Medicina Preventiva e di Comunita, 22(4), 357–367.Google Scholar
  41. Dore, M. H. (2015). Threats to human health: Use of chlorine, an obsolete treatment technology. In Global drinking water management and conservation (pp. 197–212). Cham, Switzerland: Springer.Google Scholar
  42. Dorman, H. J. D., & Deans, S. G. (2000). Antimicrobial agents from plants: Antibacterial activity of plant volatile oils. Journal of Applied Microbiology, 88(2), 308–316.PubMedCrossRefGoogle Scholar
  43. Engvall, A. (2002). May organically farmed animals pose a risk for Campylobacter infections in humans? Acta Veterinaria Scandinavica, 43(1), S85.CrossRefGoogle Scholar
  44. Fanatico, A. (2006). Organic poultry production in the United States. ATTRA. NCAT. Retrieved October 2017, from www.attra.ncat.org/attra-pub/pPDF/organicpoultry.pdf
  45. Fanatico, A. C., Owens, C. M., & Emmert, J. L. (2009). Organic poultry production in the United States: Broilers. Journal of Applied Poultry Research, 18(2), 355–366.CrossRefGoogle Scholar
  46. FDA. (2011). Salmonella illnesses linked to organic eggs consumers, food preparers reminded to cook eggs thoroughly. Retrieved October 2017, from http://www.fda.gov/Safety/Recalls/ucm276901.htm
  47. FDA. (2013). U.S. Food and Drug Administration: Everything added to food in the United States (EAFUS). Retrieved October 2017, from https://www.accessdata.fda.gov/scripts/fcn/fcnNavigation.cfm?filter=89-86-1&sortColumn=&rpt=eafusListing
  48. FDA. (2016). Good earth egg company voluntarily recalls shell eggs because of a possible health risk. Retrieved October 2017, from http://www.fda.gov/Safety/Recalls/ucm523727.htm?source=govdelivery&utm_medium=email&utm_source=govdelivery
  49. FDA. (2017). U.S. Food and Drug Administration: CFR - Code of Federal Regulations Title 21. Retrieved October 2017, from https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/CFRSearch.cfm?fr=182.20
  50. Federal Register. (2017). National Organic Program (NOP); Organic livestock and poultry practices. Retrieved October 2017, from https://www.gpo.gov/fdsys/pkg/FR-2017-01-19/pdf/2017-00888.pdf
  51. Fooks, L. J., & Gibson, G. R. (2002). Probiotics as modulators of the gut flora. British Journal of Nutrition, 88(S1), s39–s49.PubMedCrossRefGoogle Scholar
  52. Fooks, L. J., Fuller, R., & Gibson, G. R. (1999). Prebiotics, probiotics and human gut microbiology. International Dairy Journal, 9(1), 53–61.CrossRefGoogle Scholar
  53. Friedman, M. (2014). Chemistry and multibeneficial bioactivities of carvacrol (4-isopropyl-2-methylphenol), a component of essential oils produced by aromatic plants and spices. Journal of Agricultural and Food Chemistry, 62(31), 7652–7670.PubMedCrossRefGoogle Scholar
  54. Friedman, M., Henika, P. R., & Mandrell, R. E. (2003). Antibacterial activities of phenolic benzaldehydes and benzoic acids against Campylobacter jejuni, Escherichia coli, Listeria monocytogenes, and Salmonella enterica. Journal of Food Protection, 66(10), 1811–1821.PubMedCrossRefGoogle Scholar
  55. Friedman, M., Buick, R., & Elliott, C. T. (2004). Antibacterial activities of naturally occurring compounds against antibiotic-resistant Bacillus cereus vegetative cells and spores, Escherichia coli, and Staphylococcus aureus. Journal of Food Protection, 67(8), 1774–1778.PubMedCrossRefGoogle Scholar
  56. FSIS. (2015). Draft FSIS compliance guideline for controlling Salmonella and Campylobacter in raw poultry. Retrieved November 2017, from https://www.fsis.usda.gov/wps/wcm/connect/6732c082-af40-415e-9b57-90533ea4c252/Controlling-Salmonella-Campylobacter-Poultry-2015.pdf?MOD=AJPERES
  57. Fuller, R. (1989). Probiotics in man and animals. The Journal of Applied Bacteriology, 66(5), 365–378.PubMedCrossRefGoogle Scholar
  58. Gantois, I., Ducatelle, R., Pasmans, F., Haesebrouck, F., Gast, R., Humphrey, T. J., et al. (2009). Mechanisms of egg contamination by Salmonella enteritidis. FEMS Microbiology Reviews, 33(4), 718–738.PubMedCrossRefGoogle Scholar
  59. Gast, R. K., & Beard, C. W. (1990). Production of Salmonella enteritidis-contaminated eggs by experimentally infected hens. Avian Diseases, 34, 438–446.PubMedCrossRefGoogle Scholar
  60. Gauthier, R. (2003). Poultry therapeutics: New alternatives in nuevas alternativas en therapeutica aviar. In XVIII Latin American poultry congress 2003, Bolivia.Google Scholar
  61. Geissman, T. A. (1963). Flavonoid compounds, tannins, lignins and related compounds. In M. Florkin & E. H. Stotz (Eds.), Pyrrole pigments, isoprenoid compounds and phenolic plant constituents (Vol. 9, p. 265). Amsterdam: Elsevier.CrossRefGoogle Scholar
  62. Gibson, G. R., & Fuller, R. (2000). Aspects of in vitro and in vivo research approaches directed toward identifying probiotics and prebiotics for human use. The Journal of Nutrition, 130(2), 391S–395S.PubMedCrossRefGoogle Scholar
  63. Gibson, G. R., & Roberfroid, M. B. (1995). Dietary modulation of the human colonic microbiota: Introducing the concept of prebiotics. The Journal of Nutrition, 125(6), 1401.PubMedCrossRefGoogle Scholar
  64. Gill, A. O., & Holley, R. A. (2004). Mechanisms of bactericidal action of cinnamaldehyde against Listeria monocytogenes and of eugenol against L. monocytogenes and Lactobacillus sakei. Applied and Environmental Microbiology, 70(10), 5750–5755.PubMedPubMedCentralCrossRefGoogle Scholar
  65. Glos, K. (2011). Humane and healthy poultry production: A manual for organic growers. White River Junction, VT: Chelsea Green Publishing.Google Scholar
  66. Hargis, B. M., Caldwell, D. J., Byrd, J. A., Corrier, D. E., & Stanker, L. H. (1998). Preharvest crop contamination and Salmonella recovery from broiler carcasses at processing. In Proceedings, international symposium on food-borne Salmonella in poultry, Baltimore, MD, July 25–26, 1998 (pp. 220–231). American Association of Avian Pathologists.Google Scholar
  67. Harper, G. C., & Makatouni, A. (2002). Consumer perception of organic food production and farm animal welfare. British Food Journal, 104(3/4/5), 287–299.CrossRefGoogle Scholar
  68. Hinton Jr., A., Corrier, D. E., Spates, G. E., Norman, J. O., Ziprin, R. L., Beier, R. C., et al. (1990). Biological control of Salmonella typhimurium in young chickens. Avian Diseases, 34, 626–633.PubMedCrossRefGoogle Scholar
  69. Hirazawa, N., Oshima, S. I., & Hata, K. (2001a). In vitro assessment of the antiparasitic effect of caprylic acid against several fish parasites. Aquaculture, 200(3), 251–258.CrossRefGoogle Scholar
  70. Hirazawa, N., Oshima, S. I., Hara, T., Mitsuboshi, T., & Hata, K. (2001b). Antiparasitic effect of medium-chain fatty acids against the ciliate Cryptocaryon irritans infestation in the red sea bream Pagrus major. Aquaculture, 198(3), 219–228.CrossRefGoogle Scholar
  71. IFOAM. (2009). IFOAM basic standards. International Federation of Organic Movements, Tholey-theley. Retrieved October 2017, from www.ifoam.org/standard/basics
  72. Jacob, M. E., Fox, J. T., Reinstein, S. L., & Nagaraja, T. G. (2008). Antimicrobial susceptibility of foodborne pathogens in organic or natural production systems: An overview. Foodborne Pathogens and Disease, 5(6), 721–730.PubMedCrossRefGoogle Scholar
  73. Jamroz, D., Wiliczkiewicz, A., Orda, J., Wertelecki, T., & Skorupinska, J. (2004). Response of broiler chickens to the diets supplemented with feeding antibiotic or mannanoligosaccharides. Electronic Journal of Polish Agricultural Universities Series Animal Husbandry, 7(2), 1–6.Google Scholar
  74. Jensen, R. G. (2002). The composition of bovine milk lipids: January 1995 to December 2000. Journal of Dairy Science, 85(2), 295–350.PubMedCrossRefGoogle Scholar
  75. Johny, A. K., Darre, M. J., Hoagland, T. A., Schreiber, D. T., Donoghue, A. M., Donoghue, D. J., et al. (2008). Antibacterial effect of trans-cinnamaldehyde on Salmonella enteritidis and Campylobacter jejuni in chicken drinking water. Journal of Applied Poultry Research, 17(4), 490–497.CrossRefGoogle Scholar
  76. Johny, A. K., Baskaran, S. A., Charles, A. S., Amalaradjou, M. A. R., Darre, M. J., Khan, M. I., et al. (2009). Prophylactic supplementation of caprylic acid in feed reduces Salmonella enteritidis colonization in commercial broiler chicks. Journal of Food Protection, 72(4), 722–727.PubMedCrossRefGoogle Scholar
  77. Kijlstra, A., & Eijck, I. A. J. M. (2006). Animal health in organic livestock production systems: A review. NJAS - Wageningen Journal of Life Sciences, 54(1), 77–94.CrossRefGoogle Scholar
  78. Kollanoor Johny, A., Darre, M. J., Donoghue, A. M., Donoghue, D. J., & Venkitanarayanan, K. (2010). Antibacterial effect of trans-cinnamaldehyde, eugenol, carvacrol, and thymol on Salmonella enteritidis and Campylobacter jejuni in chicken cecal contents in vitro. Journal of Applied Poultry Research, 19(3), 237–244.CrossRefGoogle Scholar
  79. Kollanoor Johny, A., Mattson, T., Baskaran, S. A., Amalaradjou, M. A., Babapoor, S., March, B., et al. (2012). Reduction of Salmonella enterica serovar enteritidis colonization in 20-day-old broiler chickens by the plant-derived compounds trans-cinnamaldehyde and eugenol. Applied and Environmental Microbiology, 78(8), 2981–2987.PubMedPubMedCentralCrossRefGoogle Scholar
  80. Lin, J. (2009). Novel approaches for Campylobacter control in poultry. Foodborne Pathogens and Disease, 6(7), 755–765.PubMedPubMedCentralCrossRefGoogle Scholar
  81. Loretz, M., Stephan, R., & Zweifel, C. (2010). Antimicrobial activity of decontamination treatments for poultry carcasses: A literature survey. Food Control, 21(6), 791–804.CrossRefGoogle Scholar
  82. Lund, V. (2006). Natural living—A precondition for animal welfare in organic farming. Livestock Science, 100(2), 71–83.CrossRefGoogle Scholar
  83. Lund, V., & Algers, B. (2003). Research on animal health and welfare in organic farming—A literature review. Livestock Production Science, 80(1), 55–68.CrossRefGoogle Scholar
  84. Macfarlane, S. M. G. T., Macfarlane, G. T., & Cummings, J. T. (2006). Prebiotics in the gastrointestinal tract. Alimentary Pharmacology & Therapeutics, 24(5), 701–714.CrossRefGoogle Scholar
  85. Magkos, F., Arvaniti, F., & Zampelas, A. (2003). Putting the safety of organic food into perspective. Nutrition Research Reviews, 16(2), 211–222.PubMedCrossRefGoogle Scholar
  86. Marchese, A., Orhan, I. E., Daglia, M., Barbieri, R., Di Lorenzo, A., Nabavi, S. F., et al. (2016). Antibacterial and antifungal activities of thymol: A brief review of the literature. Food Chemistry, 210, 402–414.PubMedCrossRefGoogle Scholar
  87. Mattson, T. E., Johny, A. K., Amalaradjou, M. A. R., More, K., Schreiber, D. T., Patel, J., et al. (2011). Inactivation of Salmonella spp. on tomatoes by plant molecules. International Journal of Food Microbiology, 144(3), 464–468.PubMedCrossRefGoogle Scholar
  88. McReynolds, J. L., Byrd, J. A., Genovese, K. J., Poole, T. L., Duke, S. E., Farnell, M. B., et al. (2007). Dietary lactose and its effect on the disease condition of necrotic enteritis. Poultry Science, 86(8), 1656–1661.PubMedCrossRefGoogle Scholar
  89. Messens, W., Grijspeerdt, K., & Herman, L. (2005). Eggshell penetration by Salmonella: A review. World's Poultry Science Journal, 61(1), 71–86.CrossRefGoogle Scholar
  90. Messens, W., Grijspeerdt, K., & Herman, L. (2006). Eggshell penetration of hen’s eggs by Salmonella enterica serovar enteritidis upon various storage conditions. British Poultry Science, 47(5), 554–560.PubMedCrossRefGoogle Scholar
  91. Mitsch, P., Zitterl-Eglseer, K., Köhler, B., Gabler, C., Losa, R., & Zimpernik, I. (2004). The effect of two different blends of essential oil components on the proliferation of Clostridium perfringens in the intestines of broiler chickens. Poultry Science, 83(4), 669–675.PubMedCrossRefGoogle Scholar
  92. Nachamkin, I., & Guerry, P. (2005). Campylobacter infections. In P. M. Fratamico, A. K. Bhunia, & J. L. Smith (Eds.), Foodborne pathogens: Microbiology and molecular biology (pp. 285–293). Norfolk, UK: Caister Academic Press.Google Scholar
  93. Nair, M. K. M., Joy, J., Vasudevan, P., Hinckley, L., Hoagland, T. A., & Venkitanarayanan, K. S. (2005). Antibacterial effect of caprylic acid and monocaprylin on major bacterial mastitis pathogens. Journal of Dairy Science, 88(10), 3488–3495.PubMedCrossRefGoogle Scholar
  94. Nisbet, D. J., Corrier, D. E., Scanlan, C. M., Hollister, A. G., Beier, R. C., & Deloach, J. R. (1994). Effect of dietary lactose and cell concentration on the ability of a continuous-flow-derived bacterial culture to control Salmonella cecal colonization in broiler chickens. Poultry Science, 73(1), 56–62.PubMedCrossRefGoogle Scholar
  95. NOC. (2014). National Organic Coalition. Comments to the livestock sub-committee. Retrieved October 2017, from http://www.nationalorganiccoalition.org/_literature_122844/NOC_NOSB_Comments-Livestock_Sub-committee-April_8,_2014
  96. NOC. (2017). National Organic Coalition. Expanding organic production in the United States: Challenges & policy recommendations. Retrieved October 2017, from http://www.nationalorganiccoalition.org/LiteratureRetrieve.aspx?ID=135718
  97. NOP. (2009). National Organic Program. The National List of Allowed and Prohibited Substances. Retrieved October 2017, from http://www.ams.usda.gov/AMSv1.0/getfile?dDocName=STELPRDC5068682&acct=nopgeninfo
  98. Novak, J. S., Peck, M. W., Juneja, V. K., & Johnson, E. A. (2005). Clostridium botulinum and Clostridium perfringens. In P. M. Fratamico, A. K. Bhunia, & J. L. Smith (Eds.), Foodborne pathogens: Microbiology and molecular biology (Vol. 38, pp. 383–407). Norfolk, UK: Caister Academic Press.Google Scholar
  99. Noyes, J. (2009). Northern and Central California eggs recall. Retrieved October 2017, from http://www.nbclosangeles.com/news/local/Northern-California-Egg-Recall-Announced.html
  100. OACC. (2008). Organic Agriculture Centre of Canada. Research needs assessment of British Columbia organic farmers. Truro, NS: Nova Scotia Agricultural College. Retrieved October 2017, from https://cdn.dal.ca/content/dam/dalhousie/pdf/faculty/agriculture/oacc/en/research-priorities/Canadian_Organic_Research_Needs_Survey_BC_2008.pdf
  101. OFRF. (2007). Organic Farming Research Foundation. National Organic Research Agenda: Soils, pests, livestock, genetics. Outcomes from the scientific congress on Organic Agricultural Research (SCOAR). Retrieved October 2017, from http://ofrf.org/sites/ofrf.org/files/nora2007.pdf
  102. Oscar, T. P. (2013). Initial contamination of chicken parts with Salmonella at retail and cross-contamination of cooked chicken with Salmonella from raw chicken during meal preparation. Journal of Food Protection, 76(1), 33–39.PubMedCrossRefGoogle Scholar
  103. OTA. (2017). Organic Trade Association: Robust organic sector stays on upward climb, posts new records in U.S. sales. Retrieved October 2017, from https://www.ota.com/news/press-releases/19681
  104. Padgham, J. (2006). Introduction to pastured poultry. In Raising poultry on pasture: Ten years of success. Hughesville, PA: The American Pastured Poultry Producers Association Compilation.Google Scholar
  105. Painter, J. A., Hoekstra, R. M., Ayers, T., Tauxe, R. V., Braden, C. R., Angulo, F. J., et al. (2013). Attribution of foodborne illnesses, hospitalizations, and deaths to food commodities by using outbreak data, United States, 1998–2008. Emerging Infectious Diseases, 19(3), 407–415.PubMedPubMedCentralCrossRefGoogle Scholar
  106. Palaniappan, K., & Holley, R. A. (2010). Use of natural antimicrobials to increase antibiotic susceptibility of drug resistant bacteria. International Journal of Food Microbiology, 140(2), 164–168.PubMedCrossRefGoogle Scholar
  107. PAN. (2007). Pesticides database – California pesticide use. Retrieved October 2017, from http://www.pesticideinfo.org/Detail_ChemUse.jsp
  108. Patterson, J. A., & Burkholder, K. M. (2003). Application of prebiotics and probiotics in poultry production. Poultry Science, 82(4), 627–631.PubMedCrossRefGoogle Scholar
  109. Petschow, B. W., Batema, R. P., & Ford, L. L. (1996). Susceptibility of Helicobacter pylori to bactericidal properties of medium-chain monoglycerides and free fatty acids. Antimicrobial Agents and Chemotherapy, 40(2), 302–306.PubMedPubMedCentralCrossRefGoogle Scholar
  110. Prabuseenivasan, S., Jayakumar, M., & Ignacimuthu, S. (2006). In vitro antibacterial activity of some plant essential oils. BMC Complementary and Alternative Medicine, 6(1), 39.PubMedPubMedCentralCrossRefGoogle Scholar
  111. Rada, V., Dušková, D., Marounek, M., & Petr, J. (2001). Enrichment of Bifidobacteria in the hen caeca by dietary inulin. Folia Microbiologica, 46(1), 73–75.PubMedCrossRefGoogle Scholar
  112. Ravishankar, S., Zhu, L., Law, B., Joens, L., & Friedman, M. (2008). Plant-derived compounds inactivate antibiotic-resistant Campylobacter jejuni strains. Journal of Food Protection, 71(6), 1145–1149.PubMedCrossRefGoogle Scholar
  113. Richardson, S. D., Thruston, A. D., Caughran, T. V., Collette, T. W., Patterson, K. S., & Lykins, B. W. (1998). Chemical by-products of chlorine and alternative disinfectants. Food Technology, 52(4), 58–61.Google Scholar
  114. Robyn, J., Rasschaert, G., Messens, W., Pasmans, F., & Heyndrickx, M. (2012). Screening for lactic acid bacteria capable of inhibiting Campylobacter jejuni in in vitro simulations of the broiler chicken caecal environment. Beneficial Microbes, 3(4), 299–308.PubMedCrossRefGoogle Scholar
  115. Rosenquist, H., Nielsen, N. L., Sommer, H. M., Nørrung, B., & Christensen, B. B. (2003). Quantitative risk assessment of human campylobacteriosis associated with thermophilic Campylobacter species in chickens. International Journal of Food Microbiology, 83(1), 87–103.PubMedCrossRefGoogle Scholar
  116. Salim, H. M., Kang, H. K., Akter, N., Kim, D. W., Kim, J. H., Kim, M. J., et al. (2013). Supplementation of direct-fed microbials as an alternative to antibiotic on growth performance, immune response, cecal microbial population, and ileal morphology of broiler chickens. Poultry Science, 92(8), 2084–2090.PubMedCrossRefGoogle Scholar
  117. Salminen, S., Nybom, S., Meriluoto, J., Collado, M. C., Vesterlund, S., & El-Nezami, H. (2010). Interaction of probiotics and pathogens—Benefits to human health? Current Opinion in Biotechnology, 21(2), 157–167.PubMedCrossRefGoogle Scholar
  118. Sanders, M. E., & Marco, M. L. (2010). Food formats for effective delivery of probiotics. Annual Review of Food Science and Technology, 1, 65–85.PubMedCrossRefGoogle Scholar
  119. Santini, C., Baffoni, L., Gaggia, F., Granata, M., Gasbarri, R., Di Gioia, D., et al. (2010). Characterization of probiotic strains: An application as feed additives in poultry against Campylobacter jejuni. International Journal of Food Microbiology, 141, S98–S108.PubMedCrossRefGoogle Scholar
  120. Scallan, E., Hoekstra, R. M., Angulo, F. J., Tauxe, R. V., Widdowson, M. A., Roy, S. L., et al. (2011). Foodborne illness acquired in the United States—Major pathogens. Emerging Infectious Diseases, 17(1), 7.PubMedPubMedCentralCrossRefGoogle Scholar
  121. Schoeni, J. L., & Wong, A. C. (1994). Inhibition of Campylobacter jejuni colonization in chicks by defined competitive exclusion bacteria. Applied and Environmental Microbiology, 60(4), 1191–1197.PubMedPubMedCentralGoogle Scholar
  122. Serban, D. E. (2014). Gastrointestinal cancers: Influence of gut microbiota, probiotics and prebiotics. Cancer Letters, 345(2), 258–270.PubMedCrossRefGoogle Scholar
  123. Shahverdi, A. R., Monsef-Esfahani, H. R., Tavasoli, F., Zaheri, A., & Mirjani, R. (2007). Trans-cinnamaldehyde from Cinnamomum zeylanicum bark essential oil reduces the clindamycin resistance of Clostridium difficile in vitro. Journal of Food Science, 72(1), 55–58.CrossRefGoogle Scholar
  124. Shen, S., Zhang, T., Yuan, Y., Lin, S., Xu, J., & Ye, H. (2015). Effects of cinnamaldehyde on Escherichia coli and Staphylococcus aureus membrane. Food Control, 47, 196–202.CrossRefGoogle Scholar
  125. Shrestha, S., Arsi, K., Wagle, B., Donoghue, A., & Donoghue, D. (2017). Ability of select probiotics to reduce enteric Campylobacter colonization in broiler chickens. International Journal of Poultry Science, 16, 37–42.CrossRefGoogle Scholar
  126. Si, W., Gong, J., Tsao, R., Zhou, T., Yu, H., Poppe, C., et al. (2006). Antimicrobial activity of essential oils and structurally related synthetic food additives towards selected pathogenic and beneficial gut bacteria. Journal of Applied Microbiology, 100(2), 296–305.PubMedCrossRefGoogle Scholar
  127. Si, W., Ni, X., Gong, J., Yu, H., Tsao, R., Han, Y., et al. (2009). Antimicrobial activity of essential oils and structurally related synthetic food additives towards Clostridium perfringens. Journal of Applied Microbiology, 106(1), 213–220.PubMedCrossRefGoogle Scholar
  128. Skřivanová, E., Marounek, M., Benda, V., & Březina, P. (2006). Susceptibility of Escherichia coli, Salmonella sp. and Clostridium perfringens to organic acids and monolaurin. Veterinární Medicína, 51(3), 81–88.CrossRefGoogle Scholar
  129. Solis de Los Santos, F., Donoghue, A. M., Venkitanarayanan, K., Dirain, M. L., Reyes-Herrera, I., Blore, P. J., et al. (2008). Caprylic acid supplemented in feed reduces enteric Campylobacter jejuni colonization in ten-day-old broiler chickens. Poultry Science, 87(4), 800–804.PubMedCrossRefGoogle Scholar
  130. Solis de Los Santos, F., Donoghue, A. M., Venkitanarayanan, K., Metcalf, J. H., Reyes-Herrera, I., Dirain, M. L., et al. (2009). The natural feed additive caprylic acid decreases Campylobacter jejuni colonization in market-aged broiler chickens. Poultry Science, 88(1), 61–64.PubMedCrossRefGoogle Scholar
  131. Solis de Los Santos, F., Hume, M., Venkitanarayanan, K., Donoghue, A. M., Hanning, I., Slavik, M. F., et al. (2010). Caprylic acid reduces enteric Campylobacter colonization in market-aged broiler chickens but does not appear to alter cecal microbial populations. Journal of Food Protection, 73(2), 251–257.PubMedCrossRefGoogle Scholar
  132. Sprong, R. C., Hulstein, M. F., & Van der Meer, R. (2001). Bactericidal activities of milk lipids. Antimicrobial Agents and Chemotherapy, 45(4), 1298–1301.PubMedPubMedCentralCrossRefGoogle Scholar
  133. Stern, N. J. (2008). Salmonella species and Campylobacter jejuni cecal colonization model in broilers. Poultry Science, 87(11), 2399–2403.PubMedCrossRefGoogle Scholar
  134. Sundrum, A. (2001). Organic livestock farming: A critical review. Livestock Production Science, 67(3), 207–215.CrossRefGoogle Scholar
  135. Taylor, M., Joerger, R., Palou, E., López-Malo, A., Avila-Sosa, R., & Calix-Lara, T. (2012). Alternatives to traditional antimicrobials for organically processed meat and poultry. In S. C. Ricke, E. J. Van Loo, M. G. Johnson, & C. A. O’Bryan (Eds.), Organic meat production and processing (pp. 211–230). Hoboken, NJ: Wiley.CrossRefGoogle Scholar
  136. Tellez, G., Dean, C. E., Corrier, D. E., Deloach, J. R., Jaeger, L., & Hargis, B. M. (1993). Effect of dietary lactose on cecal morphology, pH, organic acids, and Salmonella enteritidis organ invasion in Leghorn chicks. Poultry Science, 72(4), 636–642.PubMedCrossRefGoogle Scholar
  137. Thormar, H., Hilmarsson, H., & Bergsson, G. (2006). Stable concentrated emulsions of the 1-monoglyceride of capric acid (monocaprin) with microbicidal activities against the food-borne bacteria Campylobacter jejuni, Salmonella spp., and Escherichia coli. Applied and Environmental Microbiology, 72(1), 522–526.PubMedPubMedCentralCrossRefGoogle Scholar
  138. Tuyttens, F., Heyndrickx, M., De Boeck, M., Moreels, A., Van Nuffel, A., Van Poucke, E., et al. (2008). Broiler chicken health, welfare and fluctuating asymmetry in organic versus conventional production systems. Livestock Science, 113(2), 123–132.CrossRefGoogle Scholar
  139. Upadhyay, A., Johny, A. K., Amalaradjou, M. A. R., Baskaran, S. A., Kim, K. S., & Venkitanarayanan, K. (2012). Plant-derived antimicrobials reduce Listeria monocytogenes virulence factors in vitro, and down-regulate expression of virulence genes. International Journal of Food Microbiology, 157(1), 88–94.PubMedCrossRefGoogle Scholar
  140. Upadhyay, A., Upadhyaya, I., Kollanoor-Johny, A., & Venkitanarayanan, K. (2013). Antibiofilm effect of plant derived antimicrobials on Listeria monocytogenes. Food Microbiology, 36(1), 79–89.PubMedCrossRefGoogle Scholar
  141. Upadhyaya, I., Upadhyay, A., Kollanoor-Johny, A., Baskaran, S. A., Mooyottu, S., Darre, M. J., et al. (2013). Rapid inactivation of Salmonella enteritidis on shell eggs by plant-derived antimicrobials. Poultry Science, 92(12), 3228–3235.PubMedCrossRefGoogle Scholar
  142. Upadhyaya, I., Upadhyay, A., Kollanoor-Johny, A., Mooyottu, S., Baskaran, S. A., Yin, H. B., et al. (2015). In-feed supplementation of trans-cinnamaldehyde reduces layer-chicken egg-borne transmission of Salmonella enterica serovar enteritidis. Applied and Environmental Microbiology, 81(9), 2985–2994.PubMedPubMedCentralCrossRefGoogle Scholar
  143. Upadhyaya, I., Fancher, S., Yin, H., Nair, M. S., Chen, C., Karumathil, D., et al. (2016). Reducing Salmonella Heidelberg colonization in 21-day-old broiler chicks by in-feed supplementation of β-resorcylic acid and trans-cinnamaldehyde. In 2016 PSA Annual Meeting, Poultry Science, 95(E-suppl. 1), 162.Google Scholar
  144. USDA. (2012). Guide for organic crop producers. Retrieved November 2017, from https://www.ams.usda.gov/sites/default/files/media/GuideForOrganicCropProducers.pdf
  145. van de Weerd, H. A., Keatinge, R., & Roderick, S. (2009). A review of key health-related welfare issues in organic poultry production. World’s Poultry Science Journal, 65(4), 649–684.CrossRefGoogle Scholar
  146. van Immerseel, F., De Buck, J., Boyen, F., Bohez, L., Pasmans, F., Volf, J., et al. (2004a). Medium-chain fatty acids decrease colonization and invasion through hilA suppression shortly after infection of chickens with Salmonella enterica serovar Enteritidis. Applied and Environmental Microbiology, 70(6), 3582–3587.PubMedPubMedCentralCrossRefGoogle Scholar
  147. van Immerseel, F., Buck, J. D., Pasmans, F., Huyghebaert, G., Haesebrouck, F., & Ducatelle, R. (2004b). Clostridium perfringens in poultry: An emerging threat for animal and public health. Avian Pathology, 33(6), 537–549.PubMedCrossRefGoogle Scholar
  148. Van Overbeke, I., Duchateau, L., De Zutter, L., Albers, G., & Ducatelle, R. (2006). A comparison survey of organic and conventional broiler chickens for infectious agents affecting health and food safety. Avian Diseases, 50, 196–200.PubMedCrossRefGoogle Scholar
  149. Vasudevan, P., Marek, P., Nair, M. K. M., Annamalai, T., Darre, M., Khan, M., et al. (2005). In vitro inactivation of Salmonella enteritidis in autoclaved chicken cecal contents by caprylic acid. Journal of Applied Poultry Research, 14(1), 122–125.CrossRefGoogle Scholar
  150. Velasco, S., Ortiz, L. T., Alzueta, C., Rebole, A., Trevino, J., & Rodriguez, M. L. (2010). Effect of inulin supplementation and dietary fat source on performance, blood serum metabolites, liver lipids, abdominal fat deposition, and tissue fatty acid composition in broiler chickens. Poultry Science, 89(8), 1651–1662.PubMedCrossRefGoogle Scholar
  151. Wagle, B. R., Upadhyay, A., Arsi, K., Shrestha, S., Venkitanarayanan, K., Donoghue, A. M., et al. (2017a). Application of β-resorcylic acid as potential antimicrobial feed additive to reduce Campylobacter colonization in broiler chickens. Frontiers in Microbiology, 8, 599.PubMedPubMedCentralCrossRefGoogle Scholar
  152. Wagle, B. R., Arsi, K., Upadhyay, A., Shrestha, S., Venkitanarayanan, K., Donoghue, A. M., et al. (2017b). β-resorcylic acid, a phytophenolic compound, reduces Campylobacter jejuni in postharvest poultry. Journal of Food Protection, 80(8), 1243–1251.PubMedCrossRefGoogle Scholar
  153. Waldroup, A. L. (1993). Summary of work to control pathogens in poultry processing. Poultry Science, 72(6), 1177–1179.PubMedCrossRefGoogle Scholar
  154. White, D. G., Datta, A., McDermott, P., Friedman, S., Qaiyumi, S., Ayers, S., et al. (2003). Antimicrobial susceptibility and genetic relatedness of Salmonella serovars isolated from animal-derived dog treats in the USA. Journal of Antimicrobial Chemotherapy, 52(5), 860–863.PubMedCrossRefGoogle Scholar
  155. Wollenweber, E. (1988). Occurrence of flavonoid aglycones in medicinal plants. Progress in Clinical and Biological Research, 280, 45–55.PubMedGoogle Scholar
  156. Xu, Z. R., Hu, C. H., Xia, M. S., Zhan, X. A., & Wang, M. Q. (2003). Effects of dietary fructooligosaccharide on digestive enzyme activities, intestinal microflora and morphology of male broilers. Poultry Science, 82(6), 1030–1036.PubMedCrossRefGoogle Scholar
  157. Xu, J., Zhou, F., Ji, B. P., Pei, R. S., & Xu, N. (2008). The antibacterial mechanism of carvacrol and thymol against Escherichia coli. Letters in Applied Microbiology, 47(3), 174–179.PubMedCrossRefGoogle Scholar
  158. Yin, H. B., Chen, C. H., Kollanoor-Johny, A., Darre, M. J., & Venkitanarayanan, K. (2015). Controlling Aspergillus flavus and Aspergillus parasiticus growth and aflatoxin production in poultry feed using carvacrol and trans-cinnamaldehyde. Poultry Science, 94(9), 2183–2190.PubMedCrossRefGoogle Scholar
  159. Yossa, N., Patel, J., Macarisin, D., Millner, P., Murphy, C., Bauchan, G., et al. (2014). Antibacterial activity of cinnamaldehyde and Sporan against Escherichia coli O157:H7 and Salmonella. Journal of Food Processing and Preservation, 38(3), 749–757.CrossRefGoogle Scholar
  160. Young, I., Rajić, A., Wilhelm, B. J., Waddell, L., Parker, S., & McEwen, S. A. (2009). Comparison of the prevalence of bacterial enteropathogens, potentially zoonotic bacteria and bacterial resistance to antimicrobials in organic and conventional poultry, swine and beef production: A systematic review and meta-analysis. Epidemiology and Infection, 137(9), 1217–1232.PubMedCrossRefGoogle Scholar
  161. Yusrizal, & Chen, T. C. (2003). Effect of adding chicory fructans in feed on broiler growth performance, serum cholesterol and intestinal length. International Journal of Poultry Science, 2, 214–219.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Komala Arsi
    • 1
  • Dan J. Donoghue
    • 1
  • Kumar Venkitanarayanan
    • 2
  • Ann M. Donoghue
    • 3
    Email author
  1. 1.Department of Poultry ScienceUniversity of ArkansasFayettevilleUSA
  2. 2.Department of Animal ScienceUniversity of ConnecticutStorrsUSA
  3. 3.Poultry Production and Product Safety Research Unit, ARS, USDAFayettevilleUSA

Personalised recommendations