Advertisement

Degradation of Bioresorbable Composites: The Models

  • Ismael Moreno-GomezEmail author
Chapter
Part of the Springer Theses book series (Springer Theses)

Abstract

This chapter discusses the development of computational degradation models for different bioresorbable composite materials. The models were developed in a two-stage process. Firstly, a general modelling framework was generated and analysed and secondly, this general framework was particularised for specific ceramic fillers yielding the degradation models.

References

  1. 1.
    Pan, J., Han, X., Niu, W., & Cameron, R. E. (2011). A model for biodegradation of composite materials made of polyesters and tricalcium phosphates. Biomaterials, 32(9), 2248–2255.Google Scholar
  2. 2.
    Pan, J. (2014). Modelling degradation of bioresorbable polymeric medical devices. Elsevier.Google Scholar
  3. 3.
    Bergwerf, H. (2014). MolView online application. Retrieved September 1, 2016 from http://molview.org/.
  4. 4.
    Popov, K., Rönkkömäki, H., & Lajunen, L. H. (2006). Guidelines for NMR measurements for determination of high and low p\({K}_\text{a}\) values (IUPAC Technical Report). Pure and Applied Chemistry, 78(3), 663–675.Google Scholar
  5. 5.
    Wang, Y., Pan, J., Han, X., Sinka, C., & Ding, L. (2008). A phenomenological model for the degradation of biodegradable polymers. Biomaterials, 29(23), 3393–3401.Google Scholar
  6. 6.
    Wang, Y. (2009). Modelling degradation of bioresorbable polymeric devices. Ph.D. thesis, Department of Engineering, University of Leicester.Google Scholar
  7. 7.
    Wang, L., & Nancollas, G. H. (2008). Calcium orthophosphates: crystallization and dissolution. Chemical Reviews, 108(11), 4628–4669.Google Scholar
  8. 8.
    Wang, L., Tang, R., Bonstein, T., Orme, C. A., Bush, P. J., & Nancollas, G. H. (2005). A new model for nanoscale enamel dissolution. The Journal of Physical Chemistry B, 109(2), 999–1005.Google Scholar
  9. 9.
    Tang, R., Orme, C. A., & Nancollas, G. H. (2004a). Dissolution of crystallites: surface energetic control and size effects. ChemPhysChem, 5(5), 688–696.Google Scholar
  10. 10.
    Tang, R., Wang, L., & Nancollas, G. H. (2004b). Size-effects in the dissolution of hydroxyapatite: an understanding of biological demineralization. Journal of Materials Chemistry, 14(14), 2341–2346.Google Scholar
  11. 11.
    Hayakawa, S. (2015). In vitro degradation behavior of hydroxyapatite. In M. Mucalo (Ed.), Hydroxyapatite (HAp) for biomedical applications (Vol. 4, pp. 85–105). Elsevier.Google Scholar
  12. 12.
    Grizzi, I., Garreau, H., Li, S., & Vert, M. (1995). Hydrolytic degradation of devices based on poly(DL-lactic acid) size-dependence. Biomaterials, 16(4), 305–311.Google Scholar
  13. 13.
    Dorozhkin, S. V. (2010). Bioceramics of calcium orthophosphates. Biomaterials, 31(7), 1465–1485.CrossRefGoogle Scholar
  14. 14.
    Marshall, W. L., & Franck, E. (1981). Ion product of water substance, 0–1000 \(^\circ \)C, 1–10,000 bars new international formulation and its background. Journal of Physical and Chemical Reference Data, 10(2), 295–304.Google Scholar
  15. 15.
    Morse, J. W., Arvidson, R. S., & Lüttge, A. (2007). Calcium carbonate formation and dissolution. Chemical Reviews, 107(2), 342–381.Google Scholar
  16. 16.
    Harned, H. S., & Scholes, S. R, Jr. (1941). The ionization constant of HCO\(_3^-\) from 0 to 50\(^\circ \). Journal of the American Chemical Society, 63(6), 1706–1709.Google Scholar
  17. 17.
    Harned, H. S., & Davis, R., Jr. (1943). The ionization constant of carbonic acid in water and the solubility of carbon dioxide in water and aqueous salt solutions from 0 to 50\(^\circ \). Journal of the American Chemical Society, 65(10), 2030–2037.Google Scholar
  18. 18.
    Bohner, M., Lemaître, J., & Ring, T. A. (1997). Kinetics of dissolution of \(\beta \)-tricalcium phosphate. Journal of Colloid and Interface Science, 190(1), 37–48.Google Scholar
  19. 19.
    Gleadall, A., Pan, J., Kruft, M.-A., & Kellomäki, M. (2014a). Degradation mechanisms of bioresorbable polyesters. Part 1. Effects of random scission, end scission and autocatalysis. Acta Biomaterialia, 10(5), 2223–2232.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Materials Science and MetallurgyUniversity of CambridgeCambridgeUK

Personalised recommendations