• Yongduan SongEmail author
  • Yujuan Wang
Part of the Communications and Control Engineering book series (CCE)


This chapter introduces algebraic graph theory, matrix analysis theory on graphs, stability analysis theory on cooperative control systems, and the theory of finite-time stability analysis.


  1. 1.
    Diestel, R.: Graph Theory. Springer, New York (2000)zbMATHGoogle Scholar
  2. 2.
    Godsil, C., Royle, G.F.: Algebraic Graph Theory. Springer, New York (2001)CrossRefGoogle Scholar
  3. 3.
    Olfati-Saber, R., Murray, R.: Consensus problems in networks of agents with switching topology and time-delays. IEEE Trans. Autom. Control 49, 1520–1533 (2004)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Agaev, R., Chebotarev, P.: On the spectra of nonsymmetric Laplacian matrices. Linear Algebra Appl. 399, 157–178 (2005)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Lafferriere, G., Williams, A., Caughman, J., Veerman, J.J.P.: Decentralized control of vehicle formations. Syst. Control Lett. 54(9), 899–910 (2005)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Ren, W., Cao, Y.: Distributed Coordination of Multi-agent Networks: Emergent Problems, Models, and Issues. Springer, London (2010)zbMATHGoogle Scholar
  7. 7.
    Ren, W., Beard, R.W.: Distributed Consensus in Multi-vehicle Cooperative Control. Communications and Control Engineering. Springer, London (2008)zbMATHGoogle Scholar
  8. 8.
    Khalil, H.K.: Nonlinear Systems, 3rd edn. Prentice Hall, Upper Saddle River (2002)zbMATHGoogle Scholar
  9. 9.
    Alefeld, G., Schneider, N.: On square roots of M-matrices. Linear Algebra Appl. 42, 119–132 (1982)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Horn, R.A., Johnson, C.R.: Matrix Analysis. Cambridge University Press, New York (1985)CrossRefGoogle Scholar
  11. 11.
    Horn, R.A., Johnson, C.R.: Topics in Matrix Analysis. Cambridge University Press, Cambridge (1991)CrossRefGoogle Scholar
  12. 12.
    Peng, K., Yang, Y.: Leader-following consensus problem with a varying-velocity leader and time-varying delays. Phys. A 388(2–3), 193–208 (2009)CrossRefGoogle Scholar
  13. 13.
    Hong, Y.G., Jiang, Z.P.: Finite-time stabilization of nonlinear systems with parametric and dynamic uncertainties. IEEE Trans. Autom. Control 51(12), 1950–1956 (2006)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Yu, S., Yu, X., Shirinzadeh, B., Man, Z.: Continuous finite-time control for robotic manipulators with terminal sliding mode. Automatica 41, 1957–1964 (2005)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Polycarpout, M.M., Ioannout, P.A.: A robust adaptive nonllinear control design. In: American Control Conference, pp. 1365–1369 (1993)Google Scholar
  16. 16.
    Qian, C., Lin, W.: Non-Lipschitz continuous stabilizer for nonlinear systems with uncontrollable unstable linearization. Syst. Control Lett. 42(3), 185–200 (2001)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Hardy, G., Littlewood, J., Polya, G.: Inequalities. Cambridge University Press, Cambridge (1952)zbMATHGoogle Scholar
  18. 18.
    Bhat, S., Bernstein, D.: Continuous finite-time stabilization of the translational and rotional double integrators. IEEE Trans. Autom. Control 43(5), 678–682 (1998)CrossRefGoogle Scholar
  19. 19.
    Wang, Y.J., Song, Y.D., Krstic, M., Wen, C.Y.: Fault-tolerant finite time consensus for multiple uncertain nonlinear mechanical systems under single-way directed communication interactions and actuation failures. Automatica 63, 374–383 (2016)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.School of AutomationChongqing UniversityChongqingChina

Personalised recommendations