Advertisement

Photocatalysts for Artificial Photosynthesis

  • Busra Balli
  • Buse Demirkan
  • Betul Sen
  • Fatih SenEmail author
Chapter
Part of the Environmental Chemistry for a Sustainable World book series (ECSW, volume 31)

Abstract

By the help of the novel nanocomposites and nanoparticles, photocatalysis for artificial photosynthesis is an important area of application due to the problems related to global warming and the renewed interest in the development of non-fossil fuel sources of energy. Thus, there has been a resurgence of research into the electrochemical and photochemical reaction and conversion into energy-rich products. Addressed herein, the importance of photocatalysts and their applications for artificial photosynthesis in our daily life has been stressed out for human beings. Further, the properties of photocatalysts as a result of nanoscale are also discussed here. Besides, the primary photosynthetic systems applications of photocatalysts, supramolecular artificial photosynthetic systems, covalently linked molecular systems; general photosynthesis mechanism are also pointed out here in detail.

Keywords

Artificial photosynthesis Porphyrin Subphthalocyanines BODIPY Porphyrins/naphthalocyanines 

References

  1. Abrahamson JT, Sen F, Sempere B et al (2013) Excess thermopower and the theory of thermopower waves. ACS Nano 7(8):6533–6544CrossRefGoogle Scholar
  2. Aday B, Yildiz Y, Ulus R et al (2016) One-pot, efficient and green synthesis of acridinedione derivatives using highly monodisperse platinum nanoparticles supported with reduced graphene oxide. New J Chem 40:748–754CrossRefGoogle Scholar
  3. Akocak S, Sen B, Lolak N et al (2017) One-pot three-component synthesis of 2-amino-4H-chromene derivatives by using monodisperse Pd nanomaterials anchored graphene oxide as a highly efficient and recyclable catalyst. Nanostruct Nano-objects 11:25–31CrossRefGoogle Scholar
  4. Alstrum-Acevedo JH, Brennaman MK, Meyer TJ (2005) Chemical approaches to artificial photosynthesis. 2. Inorg Chem 44:6802–6827CrossRefGoogle Scholar
  5. Aminur Rahman GM, Lüders D, Rodríguez-Morgade MS et al (2009) Physicochemical characterization of subporphyrazines-lower subphthalocyanine homologues. Chem Sus Chem 2:330–335CrossRefGoogle Scholar
  6. Ayranci R, Baskaya G, Guzel M et al (2017a) Enhanced optical and electrical properties of PEDOT via nanostructured carbon materials: a comparative investigation. Nanostruct Nano-objects 11:13–19CrossRefGoogle Scholar
  7. Ayranci R, Baskaya G, Guzel M et al (2017b) Carbon-based nanomaterials for high-performance optoelectrochemical systems. Chem Sel 2(4):1548–1555Google Scholar
  8. Balzani V, Moggi L, Scandola F (1987) Towards supramolecular photochemistry: assembly of molecular components to obtain photochemical molecular devices. Supramol Photochem 214:1–28Google Scholar
  9. Balzani V, Credi A, Venturi M (2003) Photoinduced charge separation and solar energy conversion. In: Balzani V, Credi A, Venturi M (eds) Molecular devices and machines: a journey into the Nanoworld. Wiley-VCH, Weinheim, pp 132–173CrossRefGoogle Scholar
  10. Baskaya G, Esirden I, Erken E et al (2017a) Synthesis of 5-substituted-1H-tetrazole derivatives using monodisperse carbon black decorated Pt nanoparticles as heterogeneous nanocatalysts. J Nanosci Nanotechnol 17:1992–1999CrossRefGoogle Scholar
  11. Baskaya G, Yıldız Y, Savk A et al (2017b) Rapid, sensitive, and reusable detection of glucose by highly monodisperse nickel nanoparticles decorated functionalized multi-walled carbon nanotubes. Biosens Bioelectron 91:728–733CrossRefGoogle Scholar
  12. Blankenship RE, Madigan MT, Bauer CE (eds) (1995) Anoxygenic photosynthetic bacteria. Kluwer Academic Publishing, Dordrecht, p 1343Google Scholar
  13. Bozkurt S, Tosun B, Sen B et al (2017) A hydrogen peroxide sensor based on TNM functionalized reduced graphene oxide grafted with highly monodisperse Pd nanoparticles. Anal Chim Acta 989:88–94CrossRefGoogle Scholar
  14. Britt RD (1996) Oxygen evolution. In: Yocum CY, Ort D (eds) Advances in photosynthesis: oxygenic photosynthesis, the light reactions. Kluwer Academic Publishers, Amsterdam, pp 137–164Google Scholar
  15. Brothers PJ (2008) Boron complexes of porphyrins and related polypyrrole ligands: fantastic chemistry for both boron and the porphyrin. Chem Commun 18:2090–2102Google Scholar
  16. Cabrera-Espinoza A, Insuasty B, Ortiz A (2018) Novel BODIPY-C60 derivatives with tuned photophysical and electron acceptor properties: isoxazolino[60]fullerene and pyrrolidino[60]fullerene. J Lumin 194:729–738CrossRefGoogle Scholar
  17. Celik B, Baskaya G, Karatepe O et al (2016a) Monodisperse Pt(0)/DPA@GO nanoparticles as highly active catalysts for alcohol oxidation and dehydrogenation of DMAB. Int J Hydrog Energy 41:5661–5669CrossRefGoogle Scholar
  18. Celik B, Erken E, Eris S et al (2016b) Highly monodisperse Pt(0)@AC NPs as highly efficient and reusable catalysts: the effect of the surfactant on their catalytic activities in room temperature dehydrocoupling of DMAB. Catal Sci Technol 6:1685–1692CrossRefGoogle Scholar
  19. Celik B, Kuzu S, Erken E et al (2016c) Nearly monodisperse carbon nanotube furnished nanocatalysts as highly efficient and reusable catalyst for dehydrocoupling of DMAB and C1 to C3 alcohol oxidation. Int J Hydrog Energy 41:3093–3101CrossRefGoogle Scholar
  20. Celik B, Yildiz Y, Erken E et al (2016d) Monodisperse palladium-cobalt alloy nanoparticles assembled on poly (N-vinyl-pyrrolidone) (PVP) as highly effective catalyst for the dimethylamine borane (DMAB) dehydrocoupling. RSC Adv 6:24097–24102CrossRefGoogle Scholar
  21. Chen T, Dai L (2013) Carbon nanomaterials for high-performance supercapacitors. Mater Today 16(7–8):272–280CrossRefGoogle Scholar
  22. Chitta R (2002) Master thesis, University of HyderabedGoogle Scholar
  23. Claessens CG, Gonzalez-Rodríguez D, Torres T (2002) Subphthalocyanines: singular nonplanar aromatic compounds synthesis, reactivity, and physical properties. Chem Rev 102:835–854CrossRefGoogle Scholar
  24. Collings AF, Critchley C (eds) (2005) Artificial photosynthesis: from basic biology to industrial application. Wiley-VCH Verlag, Weinheim, p 339Google Scholar
  25. D’Souza F, Ito O (2012) Photosensitized electron transfer processes of nanocarbons applicable to solar cells. Chem Soc Rev 41:86–96CrossRefGoogle Scholar
  26. D’Souza F, Smith PM, Zandler ME et al (2004) Energy transfer followed by electron transfer in a supramolecular triad composed of boron dipyrrin, zinc porphyrin, and fullerene: a model for the photosynthetic antenna-reaction center complex. J Am Chem Soc 126:7898–7907CrossRefGoogle Scholar
  27. D’Souza F, Chitta R, Sandanayaka ASD et al (2007) Self-assembled single-walled carbon nanotube: zinc–porphyrin hybrids through ammonium ion–crown ether interaction: construction and electron transfer. Chem Eur J 13:8277–8284CrossRefGoogle Scholar
  28. D’Souza F, Wijesinghe CA, El-Khouly ME et al (2011) Ultrafast excitation transfer, and charge stabilization in a newly assembled photosynthetic antenna-reaction center mimic composed of boron dipyrrin, zinc porphyrin and fullerene. Phys Chem Chem Phys 13:18168–18178CrossRefGoogle Scholar
  29. Danks SM, Evans EH, Whittaker PA (1985) Photosynthetic systems: structure, function, and assembly. Wiley, New YorkGoogle Scholar
  30. Dasdelen Z, Yıldız Y, Eris S et al (2017) Enhanced electrocatalytic activity and durability of Pt nanoparticles decorated on GO-PVP hybrid material for methanol oxidation reaction. Appl Catal B Environ 219C:511–516CrossRefGoogle Scholar
  31. Datta K, Banerjee M, Mukherjee AK (2004) Comparative study of the host−guest complexes of [60]- and [70]-fullerenes with N,N′-Dibenzyl-1,4,10,13-tetraoxane-7,16-diaza-cyclooctadecane in different solvents. J Phys Chem B 108:16100–16106CrossRefGoogle Scholar
  32. Deetz MJ, Shang M, Smith BD (2000) A macrobicyclic receptor with versatile recognition properties: simultaneous binding of an ion pair and selective complexation of dimethylsulfoxide. J Am Chem Soc 122:6201–6207CrossRefGoogle Scholar
  33. Deisenhofer J, Norris JR (eds) (1993) The photosynthetic reaction center, 1st edn. Academic, San Diego, p 432Google Scholar
  34. del Rey B, Torres T (1997) Synthesis of highly conjugated boron (III) subphthalocyanines. Tetrahedron Lett 38:5351–5354CrossRefGoogle Scholar
  35. del Rey B, Keller B, Torres T et al (1998) Synthesis and nonlinear optical, photophysical, and electrochemical properties of subphthalocyanines. J Am Chem Soc 120:12808–12817CrossRefGoogle Scholar
  36. Demir E, Savk A, Sen B et al (2017a) A novel monodisperse metal nanoparticles anchored graphene oxide as a Counter Electrode for Dye-Sensitized Solar Cells. Nanostruct Nano-objects 12:41–45CrossRefGoogle Scholar
  37. Demir E, Sen B, Sen F (2017b) Highly efficient nanoparticles and f-MWCNT nanocomposites based counter electrodes for dye-sensitized solar cells. Nanostruct Nano-objects 11:39–45CrossRefGoogle Scholar
  38. Demirci T, Celik B, Yıldız Y et al (2016) One-pot synthesis of Hantzsch dihydropyridines using highly efficient and stable PdRuNi@GO catalyst. RSC Adv 6:76948–76956CrossRefGoogle Scholar
  39. Ding Y, Zhu WH, Xie Y (2016) Development of ion chemosensors based on porphyrin analogues. Chem Rev 117:2203–2256CrossRefGoogle Scholar
  40. El-Khouly ME (2010) Electron transfer reaction of light harvesting zinc naphthalocyanine–subphthalocyanine self-assembled dyad: spectroscopic, electrochemical, computational, and photochemical studies. Phys Chem Chem Phys 12:12746–12752CrossRefGoogle Scholar
  41. El-Khouly ME, Ito O, Smith PM et al (2004) Intermolecular and supramolecular photoinduced electron transfer processes of fullerene–porphyrin/phthalocyanine systems. J Photochem Photobiol C 5:79–104CrossRefGoogle Scholar
  42. El-Khouly ME, Araki Y, Ito O et al (2006) Subphthalocyanines as light-harvesting electron donor and electron acceptor in artificial photosynthetic systems. J Porphyrins Phthalocyanines 10:1156–1164CrossRefGoogle Scholar
  43. El-Khouly ME, Shim SH, Araki Y et al (2008) Effect of dual fullerenes on lifetimes of charge-separated states of subphthalocyanine-triphenylamine-fullerene molecular systems. J Phys Chem B 112:3910–3917CrossRefGoogle Scholar
  44. El-Khouly ME, Ryu JB, Kay K-Y et al (2009) Long-lived charge separation in a dyad of closely-linked subphthalocyanine-zinc porphyrin bearing multiple triphenylamines. J Phys Chem C 113:15444–15453CrossRefGoogle Scholar
  45. El-Khouly ME, Ju DK, Kay KY et al (2010) Supramolecular tetrad of subphthalocyanine–triphenylamine–zinc porphyrin coordinated to fullerene as an “Antenna-Reaction-Center” mimic: formation of a long-lived charge-separated state in nonpolar solvent. S Chem Eur J 16:6193–6202CrossRefGoogle Scholar
  46. El-Khouly ME, Gutierrez AM, Sastre-Santos A et al (2012a) Light harvesting zinc naphthalocyanine–perylenediimide supramolecular dyads: long-lived charge-separated states in nonpolar media. Phys Chem Chem Phys 14:3612–3621CrossRefGoogle Scholar
  47. El-Khouly ME, Kim JH, Kay KY et al (2012b) Subphthalocyanines as light-harvesting electron donor and electron acceptor in artificial photosynthetic systems. J Phys Chem C 116:19709–19717CrossRefGoogle Scholar
  48. El-Khouly ME, Moiseev AG, van der Est A et al (2012c) Photoinduced electron transfer in zinc naphthalocyanine-naphthalenediimide supramolecular dyads. ChemPhysChem 13:1191–1198CrossRefGoogle Scholar
  49. El-Khouly ME, Fukuzumi S, D’souza F (2014) Photosynthetic antenna-reaction center mimicry by using boron dipyrromethene sensitizers. ChemPhysChem 15:30–47CrossRefGoogle Scholar
  50. El-Khouly ME, El-Mohsnawy E, Fukuzimi S (2017) Solar energy conversion: from natural to artificial photosynthesis. J Photochem Photobiol C Photochem Rev 31:36–83CrossRefGoogle Scholar
  51. Eris S, Dasdelen Z, Sen F et al (2018a) Investigation of electrocatalytic activity and stability of Pt@f-VC catalyst prepared by in-situ synthesis for methanol electrooxidation. Int J Hydrog Energy 43(1):385–390CrossRefGoogle Scholar
  52. Eris S, Dasdelen Z, Sen F (2018b) Enhanced electrocatalytic activity and stability of monodisperse Pt nanocomposites for direct methanol fuel cells. J Colloid Interface Sci 513:767–773CrossRefGoogle Scholar
  53. Eris S, Dasdelen Z, Yildiz Y et al (2018c) Nanostructured Polyaniline-rGO decorated platinum catalyst with enhanced activity and durability for Methanol oxidation. Int J Hydrog Energy 43(3):1337–1343CrossRefGoogle Scholar
  54. Erken E, Esirden I, Kaya M et al (2015) A rapid and novel method for the synthesis of 5-substituted 1H-tetrazole catalyzed by exceptional reusable monodisperse Pt NPs@AC under the microwave irradiation. RSC Adv 5:68558–68564CrossRefGoogle Scholar
  55. Erken E, Pamuk H, Karatepe O et al (2016a) New Pt(0) nanoparticles as highly active and reusable catalysts in the C1–C3 alcohol oxidation and the room temperature dehydrocoupling of dimethylamine-borane (DMAB). J Clust Sci 27:29CrossRefGoogle Scholar
  56. Erken E, Yildiz Y, Kilbas B et al (2016b) Synthesis and characterization of nearly monodisperse Pt nanoparticles for C1 to C3 alcohol oxidation and dehydrogenation of dimethylamine-borane (DMAB). J Nanosci Nanotechnol 16:5944–5950CrossRefGoogle Scholar
  57. Esirden I, Erken E, Kaya M et al (2015) Monodisperse Pt NPs@rGO as highly efficient and reusable heterogeneous catalysts for the synthesis of 5-substituted 1H-tetrazole derivatives. Catal Sci Technol 5:4452–4457CrossRefGoogle Scholar
  58. Fukuzumi S, Imahori H, Yamada H et al (2001) Catalytic effects of dioxygen on intramolecular electron transfer in radical ion pairs of zinc porphyrin-linked fullerenes. J Am Chem Soc 123:2571–2575CrossRefGoogle Scholar
  59. Geyer M, Plenzig F, Rauschnabel J et al (1996) Subphthalocyanines: preparation, reactivity and physical properties. Synthesis 9:1139–1151CrossRefGoogle Scholar
  60. Giraldo JP, Landry MP, Faltermeier SM et al (2014) A nanobionic approach to augment plant photosynthesis and biochemical sensing using targeted nanoparticles. Nat Mater 13:400–408CrossRefGoogle Scholar
  61. Goksu H, Celik B, Yildiz Y et al (2016a) Superior monodisperse CNT-supported CoPd (CoPd@CNT) nanoparticles for selective reduction of nitro compounds to primary amines with NaBH4 in an aqueous medium. Chem Sel 1(10):2366–2372Google Scholar
  62. Goksu H, Yildiz Y, Celik B et al (2016b) Highly efficient and monodisperse graphene oxide furnished Ru/Pd nanoparticles for the dehalogenation of aryl halides via ammonia borane. Chem Sel 1(5):953–958Google Scholar
  63. Goksu H, Yildiz Y, Celik B et al (2016c) Eco-friendly hydrogenation of aromatic aldehyde compounds by tandem dehydrogenation of dimethylamine-borane in the presence of reduced graphene oxide furnished platinum nanocatalyst. Catal Sci Technol 6:2318–2324CrossRefGoogle Scholar
  64. Gonzalez Rodríguez D, Bottari GJ (2009) Phthalocyanines, subphthalocyanines and porphyrins for energy and electron transfer applications. Porphyrins Phthalocyanines 13:624–636CrossRefGoogle Scholar
  65. Gonzalez-Rodríguez D, Torres T, Guldi DM et al (2002) Energy transfer processes in novel subphthalocyanine-fullerene ensembles. Org Lett 4:335–338CrossRefGoogle Scholar
  66. Gonzalez-Rodríguez D, Torres T, Olmstead MM et al (2006) Photoinduced charge-transfer states in subphthalocyanine-ferrocene dyads. J Am Chem Soc 128:10680–10681CrossRefGoogle Scholar
  67. Gonzalez-Rodríguez D, Carbonell E, Guldi DM et al (2009) Modulating electronic interactions between closely spaced complementary π surfaces with different outcomes: regio- and diastereomerically pure subphthalocyanine–C60 tris adducts. Angew Chem Int Ed 48:8032–8036CrossRefGoogle Scholar
  68. Guldi DM (2000) Fullerenes: three-dimensional electron acceptor materials. Chem Commun 5:321–327Google Scholar
  69. Gust D, Moore TA (1999) Intramolecular photoinduced electron-transfer reactions of porphyrins. In: Gust D, Moore TA (eds) The porphyrin handbook. Academic, New York, pp 153–190Google Scholar
  70. Gust D, Moore TA, Moore AL (1993) Molecular mimicry of photosynthetic energy and electron transfer. Acc Chem Res 26:198–205CrossRefGoogle Scholar
  71. Gust D, Moore TA, Moore AL (2001) Mimicking photosynthetic solar energy transduction. Acc Chem Res 34(1):40–48CrossRefGoogle Scholar
  72. Hasobe T, Kamat PV, Absalom MA et al (2004) Supramolecular photovoltaic cells based on composite molecular nanoclusters: dendritic porphyrin and C60, porphyrin dimer and C60, and porphyrin-C60 dyad. J Phys Chem B 108:12865–12872CrossRefGoogle Scholar
  73. Hasobe T, Kamat PV, Troiani V et al (2005) Enhancement of light-energy conversion efficiency by multi-porphyrin arrays of porphyrin-peptide oligomers with fullerene clusters. J Phys Chem B 109:19–23CrossRefGoogle Scholar
  74. Hasobe T, Saito K, Kamat PV et al (2007) Organic solar cells. Supramolecular composites of porphyrins and fullerenes organized by polypeptide structures as light harvesters. J Mater Chem 17:4160–4170CrossRefGoogle Scholar
  75. Hosomizu K, Imahori H, Hahn U et al (2007) Dendritic effects on structure and photophysical and photoelectrochemical properties of fullerene dendrimers and their nanoclusters. J Phys Chem C 111:2777–2786CrossRefGoogle Scholar
  76. Imahori H, Mori Y, Matano J (2003) Nanostructured artificial photosynthesis. J Photochem Photobiol C 4:51–83CrossRefGoogle Scholar
  77. Imahori H, Fujimoto A, Kang S et al (2005a) Host-guest interactions in the supramolecular incorporation of fullerenes into tailored holes on porphyrin-modified gold nanoparticles in molecular photovoltaics. Chem Eur J 11:7265CrossRefGoogle Scholar
  78. Imahori H, Fujimoto A, Kang S et al (2005b) Supramolecular incorporation of C60 molecules into tailored holes on porphyrin-modified gold nanoclusters. Adv Mater 17:1727–1730CrossRefGoogle Scholar
  79. Imahori H, Mitamura K, Shibano Y et al (2006a) A photoelectrochemical device with a nanostructured SnO2 electrode modified with composite clusters of porphyrin-modified silica nanoparticle and fullerene. J Phys Chem B 110:11399–11405CrossRefGoogle Scholar
  80. Imahori H, Mitamura K, Umeyama T et al (2006b) Chem Commun 28:406–408CrossRefGoogle Scholar
  81. Ishii K (2012) Functional singlet oxygen generators based on phthalocyanines. Coord Chem Rev 256:1556–1568CrossRefGoogle Scholar
  82. Izzat RM, Bradshaw JS, Nielson SA et al (1985) Thermodynamic and kinetic data for cation-macrocycle interaction. Chem Rev 85:271–339CrossRefGoogle Scholar
  83. Karatepe O, Yildiz Y, Pamuk H et al (2016) Enhanced electrocatalytic activity and durability of highly monodisperse Pt@PPy-PANI nanocomposites as a novel catalyst for electro-oxidation of methanol. RSC Adv 6:50851–50857CrossRefGoogle Scholar
  84. KC CB, D’Souza F (2016) Design and photochemical study of supramolecular donor-acceptor systems assembled via metal-ligand axial coordination. Coord Chem Rev 322:104–141CrossRefGoogle Scholar
  85. Kietaibl H (1974) The crystal and molecular structure of a new phthalocyanine-like boron complex. Monatsh Chem 105:405–418CrossRefGoogle Scholar
  86. Kim D (2012) Multiporphyrin arrays: fundamentals and applications. CRC Press, Boca Raton, p 828CrossRefGoogle Scholar
  87. Kim JH, El-Khouly ME, Araki Y et al (2008) Photoinduced processes of subphthalocyanine–diazobenzene–fullerene triad as an efficient excited energy transfer system. Chem Lett 37:544–−545CrossRefGoogle Scholar
  88. Kim BS, Ma B, Donuru VR et al (2010) Bodipy-backboned polymers as an electron donor in bulk heterojunction solar cells. Chem Commun 46:4148–4150CrossRefGoogle Scholar
  89. Kobayashi N (2002) Coord Chem Rev 227:129–252CrossRefGoogle Scholar
  90. Kuninobu K, Tsutomu I, Makoto H et al (1996) Structure and some properties of (alkoxo)(subphthalocyaninato)boron(III). Bull Chem Soc Jpn 69:2559–2563CrossRefGoogle Scholar
  91. Ladomenou K, Nikolaou V, Charalambidis G et al (2017) Porphyrin-BODIPY-based hybrid model compounds for artificial photosynthetic reaction centers. C R Chim 20:314–322CrossRefGoogle Scholar
  92. Lehn JM (1990) Perspectives in supramolecular chemistry-from molecular recognition towards molecular information processing and self-organization. Angew Chem Int Ed 29:1304–1319CrossRefGoogle Scholar
  93. Lehn JM (1993) Supramolecular chemistry. Science 260:1762–1763CrossRefGoogle Scholar
  94. Liao J, Wang Y, Xu Y et al (2015) Synthesis, optical and electrochemical properties of novel meso-triphenylamine BODIPY dyes with aromatic moieties at 3,5-positions. Tetrahedron 71:5078–5084CrossRefGoogle Scholar
  95. Liao J, Zhao H, Xu Y et al (2016) Novel D-A-D type dyes based on BODIPY platform for solution-processed organic solar cells. Dyes Pigments 128:131–140CrossRefGoogle Scholar
  96. Liddell PA, Sumida JP, Macpherson AN et al (1994) Preparation and photophysical studies of porphyrin-C60 dyads. Photochem Photobiol 60:537–541CrossRefGoogle Scholar
  97. Luhman WA, Holmes RJ (2011) Investigation of energy transfer in organic photovoltaic cells and impact on exciton diffusion length measurements. Adv Funct Mater 21:764–771CrossRefGoogle Scholar
  98. Macor L, Fungo F, Tempesti T et al (2009) Near-IR sensitization of wide band gap oxide semiconductor by axially anchored Si-naphthalocyanines. Energy Environ Sci 2:529–534CrossRefGoogle Scholar
  99. Maligaspe E, Tkachenko NV, Subbaiyan NK et al (2009) Photosynthetic antenna−reaction center mimicry: sequential energy- and electron transfer in a self-assembled supramolecular triad composed of boron dipyrrin, zinc porphyrin, and fullerene. J Phys Chem A 113:8478–8489CrossRefGoogle Scholar
  100. Maligaspe E, Kumpulainen T, Subbaiyan NK et al (2010) Electronic energy harvesting multi BODIPY-zinc porphyrin dyads accommodating fullerene as a photosynthetic composite of antenna-reaction center. Phys Chem Chem Phys 12:7434–7444CrossRefGoogle Scholar
  101. Mao M, Zhang X, Cao L et al (2015) Design of Bodipy based organic dyes for high-efficient dye-sensitized solar cells employing double electron acceptors. Dyes Pigments 117:28–36CrossRefGoogle Scholar
  102. Martin JN (2000) System engineering guidebook. CRC Press, Boca Raton, p 13Google Scholar
  103. Mazik M, Kuschel M, Sicking W (2006) Crown ethers as building blocks for carbohydrate receptors. Org Lett 8:855–858CrossRefGoogle Scholar
  104. Nierengarten JF (2014) Fullerenes and other carbon-rich nanostructures. Springer, Berlin.  https://doi.org/10.1007/978-3-642-54854-3 CrossRefGoogle Scholar
  105. Ohkubo K, Fukuzumi S (2009) Rational design and functions of electron donor-acceptor dyads with much longer charge-separated lifetimes than natural photosynthetic reaction centers. Bull Chem Soc Jpn 82:303–315CrossRefGoogle Scholar
  106. Pan B, Zhu Y-Z, Ye D et al (2018) Improved conversion efficiency in dye-sensitized solar cells based on porphyrin dyes with dithieno[3,2-b:2,3-d]pyrrole donor. Dyes Pigments 150:223–230CrossRefGoogle Scholar
  107. Panda MK, Labomenou K, Coutsolelos AG (2012) Porphyrins in bio-inspired transformations: light-harvesting to the solar cell. Coord Chem Rev 256:2601–2627CrossRefGoogle Scholar
  108. Pederson CJ (1967) Cyclic polyethers and their complexes with metal salts. J Am Chem Soc 89:7017–7036CrossRefGoogle Scholar
  109. Poddutoori PK, Zarrabi N, Moiseev AG, Gumbau-Birsa R, Vassiliev S, Est AVD (2013) Chem Eur J 19:3148–3157CrossRefGoogle Scholar
  110. Rauschnabel J, Hanack M (1995) New derivatives and homologs of subphthalocyanine. Tetrahedron Lett 36:1629–1632CrossRefGoogle Scholar
  111. Romero Nieto C, Medina A, Molina-Ontoria A et al (2012) Towards enhancing light harvesting-subphthalocyanines as electron acceptors. Chem Commun 48:4953–4955CrossRefGoogle Scholar
  112. Romero-Nieto C, Guilleme J, Villegas C et al (2011) Subphthalocyanine-polymethine cyanine conjugate: an all organic panchromatic light harvester that reveals charge transfer. J Mater Chem 21:15914–15918CrossRefGoogle Scholar
  113. Sagawa T, Yoshikawa S, Imahori H (2010) One-dimensional nanostructured semiconducting materials for organic photovoltaics. J Phys Chem Lett 1:1020–1025CrossRefGoogle Scholar
  114. Sahin B, Demir E, Aygun A et al (2017) Investigation of the effect of pomegranate extract and monodisperse silver nanoparticle combination on MCF-7 cell line. J Biotechnol 260C:79–83CrossRefGoogle Scholar
  115. Sahin B, Aygun A, Gunduz H et al (2018) Cytotoxic effects of platinum nanoparticles obtained from pomegranate extract by the green synthesis method on the MCF-7 cell line. Colloids Surf B Biointerfaces 163:119–124CrossRefGoogle Scholar
  116. Sastre A, Torres T, Diaz-Garcia MA et al (1996) Subphthalocyanines: novel targets for remarkable second-order optical nonlinearities. J J Am Chem Soc 118:2746–2747CrossRefGoogle Scholar
  117. Sen F, Boghossian AA, Sen S et al (2013a) Application of nanoparticle antioxidants to enable hyperstable chloroplasts for solar energy harvesting. Adv Energy Mater 3(7):881–893CrossRefGoogle Scholar
  118. Sen S, Sen F, Boghossian AA et al (2013b) The effect of reductive dithiothreitol and trolox on nitric oxide quenching of single-walled carbon nanotubes. J Phys Chem C 117(1):593–602CrossRefGoogle Scholar
  119. Sen F, Karatas Y, Gülcan M et al (2014a) Amylamine stabilized platinum (0) nanoparticles: active and reusable nanocatalyst in the room temperature dehydrogenation of dimethylamine- borane. RSC Adv 4(4):1526–1531CrossRefGoogle Scholar
  120. Sen F, Ulissi ZW, Gong X et al (2014b) Spatiotemporal intracellular nitric oxide signaling captured using internalized, near-infrared fluorescent carbon nanotube nanosensors. Nano Lett 14(8):4887–4894CrossRefGoogle Scholar
  121. Sen B, Kuzu S, Demir E et al (2017a) Hydrogen liberation from the dehydrocoupling of dimethylamine-borane at room temperature by using novel and highly monodispersed RuPtNi nanocatalysts decorated with graphene oxide. Int J Hydrog Energy 42(36):23299–23306CrossRefGoogle Scholar
  122. Sen B, Kuzu S, Demir E et al (2017b) Polymer-graphene hybrid decorated Pt nanoparticles as highly efficient and reusable catalyst for the dehydrogenation of dimethylamine-borane at room temperature. Int J Hydrog Energy 42(36):23284–23291CrossRefGoogle Scholar
  123. Sen B, Akdere EH, Savk A et al (2018) A novel thiocarbamide functionalized graphene oxide supported bimetallic monodisperse Rh-Pt nanoparticles (RhPt/TC@GO NPs) for Knoevenagel condensation of aryl aldehydes together with malononitrile. Appl Catal B Environ 225(5):148–153CrossRefGoogle Scholar
  124. Shah SM, Kira A, Imahori H et al (2012) Co-grafting of porphyrins and fullerenes on ZnO nanorods: towards supramolecular donor-acceptor assembly. J Colloid Interface Sci 386:268–276CrossRefGoogle Scholar
  125. Shimizu S, Nakano S, Hosoya T et al (2011) Pyrene-fused subphthalocyanine. Chem Commun 47:316–318CrossRefGoogle Scholar
  126. Solntsev PV, Spurgin KL, Sabin JR et al (2012) Photoinduced charge transfer in short-distance ferrocenylsubphthalocyanine dyads. Inorg Chem 51:6537–6547CrossRefGoogle Scholar
  127. Takeda A, Oku T, Suzuki A et al (2013) Fabrication and characterization of fullerene-based solar cells containing phthalocyanine and naphthalocyanine dimers. Synth Met 177:48–51CrossRefGoogle Scholar
  128. Torres T (2006) From subphthalocyanines to subporphyrins. Angew Chem Int Ed. 2006 45:2834–2837CrossRefGoogle Scholar
  129. Tsuda A, Osuka A (2001) Fully conjugated porphyrin tapes with electronic absorption bands that reach into the infrared. Science 293:79–82CrossRefGoogle Scholar
  130. Urban M, Grätzel M, Nazeeruddin MK et al (2014) Meso-substituted porphyrins for dye-sensitized solar cells. Chem Rev 114:12330–12396CrossRefGoogle Scholar
  131. Verrett B, Rand BP, Cheyns D et al (2011) A 4% efficient organic solar cell using a fluorinated fused subphthalocyanine dimer as an electron acceptor. Adv Energy Mater 1:565–568CrossRefGoogle Scholar
  132. Wheeler RA (2004) Molecular bioenergetics: simulations of electron, proton, and energy transfer. American Chemical Society, Washington, DC. 2004CrossRefGoogle Scholar
  133. Yildiz Y, Erken E, Pamuk H et al (2016a) Monodisperse Pt nanoparticles assembled on reduced graphene oxide: highly efficient and reusable catalyst for methanol oxidation and dehydrocoupling of dimethylamine-borane (DMAB). J Nanosci Nanotechnol 16:5951–5958CrossRefGoogle Scholar
  134. Yildiz Y, Esirden I, Erken E et al (2016b) Microwave (Mw)-assisted synthesis of 5-substituted 1H-tetrazoles via [3+2] cycloaddition catalyzed by Mw-Pd/Co nanoparticles decorated on multi-walled carbon nanotubes. Chem Sel 1(8):1695–1701Google Scholar
  135. Yildiz Y, Okyay TO, Gezer B et al (2016c) Monodisperse Mw-Pt NPs@VC as highly efficient and reusable adsorbents for methylene blue removal. J Clust Sci 27:1953–1962CrossRefGoogle Scholar
  136. Yildiz Y, Pamuk H, Karatepe O et al (2016d) Carbon black hybrid material furnished monodisperse platinum nanoparticles as highly efficient and reusable electrocatalysts for formic acid electro-oxidation. RSC Adv 6:32858–32862CrossRefGoogle Scholar
  137. Yildiz Y, Ulus R, Eris S et al (2016e) Functionalized multi-walled carbon nanotubes (f-MWCNT) as highly efficient and reusable heterogeneous catalysts for the synthesis of acridinedione derivatives. Chem Sel 1(13):3861–3865Google Scholar
  138. Yildiz Y, Kuzu S, Sen B et al (2017a) Different ligand based monodispersed metal nanoparticles decorated with rGO as highly active and reusable catalysts for the methanol oxidation. Int J Hydrog Energy 42(18):13061–13069CrossRefGoogle Scholar
  139. Yildiz Y, Okyay TO, Sen B et al (2017b) Highly monodisperse Pt/Rh nanoparticles confined in the graphene oxide for highly efficient and reusable sorbents for methylene blue removal from aqueous solutions. Chem Sel 2(2):697–670Google Scholar
  140. Zhao H, Liao J, Peng M et al (2015) Synthesis of fluorene-based di-BODIPY dyes containing different aromatic linkers and their properties. Tetrahedron Lett 56:7145–7149CrossRefGoogle Scholar
  141. Zhu P, Song F, Ma P, Li S, Wang Y (2018) Effective photocurrent generation in supramolecular porphyrin-fullerene conjugates assembled by crown ether-alkyl ammonium cation interactions. Dyes Pigments.  https://doi.org/10.1016/j.dyepig.2018.01.012

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Busra Balli
    • 1
  • Buse Demirkan
    • 1
  • Betul Sen
    • 1
  • Fatih Sen
    • 1
    Email author
  1. 1.Sen Research Group, Biochemistry Department, Faculty of Arts and ScienceDumlupınar UniversityKütahyaTurkey

Personalised recommendations