Advertisement

Z-Scheme Photocatalysts for the Reduction of Carbon Dioxide: Recent Advances and Perspectives

  • Xiaodi Zhu
  • Song SunEmail author
Chapter
Part of the Environmental Chemistry for a Sustainable World book series (ECSW, volume 31)

Abstract

Photocatalytic reduction of carbon dioxide, i.e. CO2 using artificial Z-scheme systems, appears to be a promising approach to convert CO2 into useful chemicals. In this chapter, basic principles for the photocatalytic reduction of CO2 as well as terminologies, concepts, and the charge transfer mechanism in artificial Z-scheme systems are described in general. The state-of-the-art achievements of Z-scheme photocatalysts for the reduction of CO2 are thoroughly summarized and discussed in detail by presenting selected systems in terms of different Z-scheme constructions, including (i) aqueous shuttle redox-mediated Z-scheme systems, denoted as PS-A/D-PS; (ii) all-solid-state Z-scheme systems with/without a conductor electron mediator, denoted as PS-C-PS and PS-PS, respectively; and (iii) semiconductor/metal-complex hybrid Z-scheme systems, denoted as SC-MC. In spite of these, the development on semiconductor photocatalyst materials from the perspective of light harvesting and the cocatalyst strategy for potentially boosting the activity and/or product selectivity for the photocatalytic reduction of CO2 using Z-scheme systems are also discussed and highlighted. Finally, a concise perspective for the future direction of research on photocatalytic conversion of CO2 using Z-scheme photocatalyst is proposed.

Keywords

Energy conversion Photocatalysis Z-scheme CO2 reduction Activity Selectivity Cocatalyst Light harvesting Charge transfer Solar fuel 

Notes

Acknowledgements

This work was supported by the National Key Research and Development Program (2016YFB0700205), National Natural Science Foundation of China (U1632273 and 11205159), and Hefei Center for Physical Science and Technology (2016FXZY002).

References

  1. Abe R, Sayama K, Sugihara H (2005) J Phys Chem B 109:16052.  https://doi.org/10.1021/jp052848l CrossRefGoogle Scholar
  2. Abe R, Shinmei K, Koumura N, Hara K, Ohtani B (2013) J Am Chem Soc 135:16872.  https://doi.org/10.1021/ja4048637 CrossRefGoogle Scholar
  3. Aguirre ME, Zhou R, Eugene AJ, Guzman MI, Grela MA (2017) Appl Catal B Environ 217:485.  https://doi.org/10.1016/j.apcatb.2017.05.058 CrossRefGoogle Scholar
  4. Arai T, Sato S, Kajino T, Morikawa T (2013) Energy Environ Sci 6:1274.  https://doi.org/10.1039/c3ee24317f CrossRefGoogle Scholar
  5. Bai Y, Ye L, Wang L, Shi X, Wang P, Bai W, Wong PK (2016a) Appl Catal B Environ 194:98.  https://doi.org/10.1016/j.apcatb.2016.04.052 CrossRefGoogle Scholar
  6. Bai Y, Chen T, Wang P, Wang L, Ye L, Shi X, Bai W (2016b) Sol Energy Mater Sol Cells 157:406.  https://doi.org/10.1016/j.solmat.2016.07.001 CrossRefGoogle Scholar
  7. Barton EE, Rampulla DM, Bocarsly AB (2008) J Am Chem Soc 130:6342.  https://doi.org/10.1021/ja0776327 CrossRefGoogle Scholar
  8. Byun KE, Chung HJ, Lee J, Yang H, Song HJ, Heo J, Seo DH, Park S, Hwang SW, Yoo I, Kim K (2013) Nano Lett 13:4001.  https://doi.org/10.1021/nl402367y CrossRefGoogle Scholar
  9. Chen S, Takata T, Domen K (2017) Nat Rev Mater 2:17050.  https://doi.org/10.1038/natrevmats.2017.50 CrossRefGoogle Scholar
  10. Di T, Zhu B, Cheng B, Yu J, Xu J (2017) J Catal 352:532.  https://doi.org/10.1016/j.jcat.2017.06.006 CrossRefGoogle Scholar
  11. Ding X, Liow CH, Zhang M, Huang R, Li C, Shen H, Liu M, Zou Y, Gao N, Zhang Z, Li Y, Wang Q, Li S, Jiang J (2014) J Am Chem Soc 136:15684.  https://doi.org/10.1021/ja508641z CrossRefGoogle Scholar
  12. Feng Z, Zeng L, Chen Y, Ma Y, Zhao C, Jin R, Lu Y, Wu Y, He Y (2017) J Mater Res 32:3660.  https://doi.org/10.1557/jmr.2017.271 CrossRefGoogle Scholar
  13. Habisreutinger SN, Schmidt-Mende L, Stolarczyk JK (2013) Angew Chem Int Ed Eng 52:7372.  https://doi.org/10.1002/anie.201207199 CrossRefGoogle Scholar
  14. He Y, Zhang L, Teng B, Fan M (2015a) Environ Sci Technol 49:649.  https://doi.org/10.1021/es5046309 CrossRefGoogle Scholar
  15. He Y, Zhang L, Fan M, Wang X, Walbridge ML, Nong Q, Wu Y, Zhao L (2015b) Sol Energy Mater Sol Cells 137:175.  https://doi.org/10.1016/j.solmat.2015.01.037 CrossRefGoogle Scholar
  16. Hiroshi Inoue HM, Maeda K, Yoneyama H (1995) J Photochem Photobiol A Chem 86:191.  https://doi.org/10.1016/1010-6030(94)03936-o CrossRefGoogle Scholar
  17. Hisatomi T, Kubota J, Domen K (2014) Chem Soc Rev 43:7520.  https://doi.org/10.1039/c3cs60378d CrossRefGoogle Scholar
  18. Huang WL (2009) J Comput Chem 30:1882.  https://doi.org/10.1002/jcc.21191 CrossRefGoogle Scholar
  19. Hurst TF, Cockerill TT, Florin NH (2012) Energy Environ Sci 5:7132.  https://doi.org/10.1039/c2ee21204h CrossRefGoogle Scholar
  20. Indrakanti VP, Kubicki JD, Schobert HH (2009) Energy Environ Sci 2:745.  https://doi.org/10.1039/b822176f CrossRefGoogle Scholar
  21. Inoue T, Fujishima A, Konishi S, Honda K (1979) Nature 277:637.  https://doi.org/10.1038/277637a0 CrossRefGoogle Scholar
  22. IPCC (2007) Climate change 2007, contribution of working group 2 to the fourth assessment.  https://doi.org/10.2134/jeq2008.0015br
  23. Iwase A, Yoshino S, Takayama T, Ng YH, Amal R, Kudo A (2016) J Am Chem Soc 138:10260.  https://doi.org/10.1021/jacs.6b05304 CrossRefGoogle Scholar
  24. Jiao X, Li X, Jin X, Sun Y, Xu J, Liang L, Ju H, Zhu J, Pan Y, Yan W, Lin Y, Xie Y (2017) J Am Chem Soc 139:18044.  https://doi.org/10.1021/jacs.7b10287 CrossRefGoogle Scholar
  25. Jin J, Yu J, Guo D, Cui C, Ho W (2015) Small 11:5262.  https://doi.org/10.1002/smll.201500926 CrossRefGoogle Scholar
  26. Kochuveedu ST, Jang YH, Kim DH (2013) Chem Soc Rev 42:8467.  https://doi.org/10.1039/c3cs60043b CrossRefGoogle Scholar
  27. Kondratenko EV, Mul G, Baltrusaitis J, Larrazábal GO, Pérez-Ramírez J (2013) Energy Environ Sci 6:3112.  https://doi.org/10.1039/c3ee41272e CrossRefGoogle Scholar
  28. Kuai L, Zhou Y, Tu W, Li P, Li H, Xu Q, Tang L, Wang X, Xiao M, Zou Z (2015) RSC Adv 5:88409.  https://doi.org/10.1039/c5ra14374h CrossRefGoogle Scholar
  29. Kudo A, Miseki Y (2009) Chem Soc Rev 38:253.  https://doi.org/10.1039/b800489g CrossRefGoogle Scholar
  30. Kuehnel MF, Orchard KL, Dalle KE, Reisner E (2017) J Am Chem Soc 139:7217.  https://doi.org/10.1021/jacs.7b00369 CrossRefGoogle Scholar
  31. Kuriki R, Matsunaga H, Nakashima T, Wada K, Yamakata A, Ishitani O, Maeda K (2016) J Am Chem Soc 138:5159.  https://doi.org/10.1021/jacs.6b01997 CrossRefGoogle Scholar
  32. Kuriki R, Yamamoto M, Higuchi K, Yamamoto Y, Akatsuka M, Lu D, Yagi S, Yoshida T, Ishitani O, Maeda K (2017) Angew Chem Int Ed Eng 56:4867.  https://doi.org/10.1002/anie.201701627 CrossRefGoogle Scholar
  33. Li H, Gan S, Wang H, Han D, Niu L (2015a) Adv Mater 27:6906.  https://doi.org/10.1002/adma.201502755 CrossRefGoogle Scholar
  34. Li P, Zhou Y, Li H, Xu Q, Meng X, Wang X, Xiao M, Zou Z (2015b) Chem Commun (Camb) 51:800.  https://doi.org/10.1039/c4cc08744e CrossRefGoogle Scholar
  35. Li M, Zhang L, Fan X, Zhou Y, Wu M, Shi J (2015c) J Mater Chem A 3:5189.  https://doi.org/10.1039/c4ta06295g CrossRefGoogle Scholar
  36. Li K, Peng B, Peng T (2016a) ACS Catal 6:7485.  https://doi.org/10.1021/acscatal.6b02089 CrossRefGoogle Scholar
  37. Li H, Gao Y, Zhou Y, Fan F, Han Q, Xu Q, Wang X, Xiao M, Li C, Zou Z (2016b) Nano Lett 16:5547.  https://doi.org/10.1021/acs.nanolett.6b02094 CrossRefGoogle Scholar
  38. Liu Y, Ji G, Dastageer MA, Zhu L, Wang J, Zhang B, Chang X, Gondal MA (2014) RSC Adv 4:56961.  https://doi.org/10.1039/c4ra10670a CrossRefGoogle Scholar
  39. Liu J, L Y, Liu N, Han Y, Zhang X, Huang H, Lifshitz Y, Lee S, Zhong J, Kang Z (2015) Science 347:970.  https://doi.org/10.1126/science.aaa3145 CrossRefGoogle Scholar
  40. Maeda K (2016) Proc SPIE 9935:99350J.  https://doi.org/10.1117/12.2258625 CrossRefGoogle Scholar
  41. Maeda K, Domen K (2007) J Phys Chem C 111:7851.  https://doi.org/10.1021/jp070911w CrossRefGoogle Scholar
  42. Moriya M, Minegishi T, Kumagai H, Katayama M, Kubota J, Domen K (2013) J Am Chem Soc 135:3733.  https://doi.org/10.1021/ja312653y CrossRefGoogle Scholar
  43. Muraoka K, Kumagai H, Eguchi M, Ishitani O, Maeda K (2016) Chem Commun (Camb) 52:7886.  https://doi.org/10.1039/c6cc03627a CrossRefGoogle Scholar
  44. Nakada A, Nakashima T, Sekizawa K, Maeda K, Ishitani O (2016) Chem Sci 7:4364.  https://doi.org/10.1039/c6sc00586a CrossRefGoogle Scholar
  45. Nandy S, Goto Y, Hisatomi T, Moriya Y, Minegishi T, Katayama M, Domen K (2017) ChemPhotoChem 1:265.  https://doi.org/10.1002/cptc.201700005 CrossRefGoogle Scholar
  46. Ohno T, Bai L, Hisatomi T, Maeda K, Domen K (2012) J Am Chem Soc 134:8254.  https://doi.org/10.1021/ja302479f CrossRefGoogle Scholar
  47. Ohno T, Murakami N, Koyanagi T, Yang Y (2014) J CO2 Utilization 6:17.  https://doi.org/10.1016/j.jcou.2014.02.002 CrossRefGoogle Scholar
  48. Ou F, Buchholz DB, Yi F, Liu B, Hseih C, Chang RP, Ho ST (2011) ACS Appl Mater Interfaces 3:1341.  https://doi.org/10.1021/am2001357 CrossRefGoogle Scholar
  49. Ozin GA (2015) Energy Environ Sci 8:1682.  https://doi.org/10.1039/c5ee00907c CrossRefGoogle Scholar
  50. Pinaud BA, Benck JD, Seitz LC, Forman AJ, Chen Z, Deutsch TG, James BD, Baum KN, Baum GN, Ardo S, Wang H, Miller E, Jaramillo TF (2013) Energy Environ Sci 6:1983.  https://doi.org/10.1039/c3ee40831k CrossRefGoogle Scholar
  51. Sakimoto KK, Zhang SJ, Yang P (2016) Nano Lett 16:5883.  https://doi.org/10.1021/acs.nanolett.6b02740 CrossRefGoogle Scholar
  52. Sasaki Y, Iwase A, Kato H, Kudo A (2008) J Catal 259:133.  https://doi.org/10.1016/j.jcat.2008.07.017 CrossRefGoogle Scholar
  53. Sasaki Y, Kato H, Kudo A (2013) J Am Chem Soc 135:5441.  https://doi.org/10.1021/ja400238r CrossRefGoogle Scholar
  54. Sato S, Arai T, Morikawa T, Uemura K, Suzuki TM, Tanaka H, Kajino T (2011) J Am Chem Soc 133:15240.  https://doi.org/10.1021/ja204881d CrossRefGoogle Scholar
  55. Sayama K, Abe R, Arakawa H, Sugihara H (2006) Catal Commun 7:96.  https://doi.org/10.1016/j.catcom.2005.09.008 CrossRefGoogle Scholar
  56. Sekizawa K, Maeda K, Domen K, Koike K, Ishitani O (2013) J Am Chem Soc 135:4596.  https://doi.org/10.1021/ja311541a CrossRefGoogle Scholar
  57. Simon T, Bouchonville N, Berr MJ, Vaneski A, Adrovic A, Volbers D, Wyrwich R, Doblinger M, Susha AS, Rogach AL, Jackel F, Stolarczyk JK, Feldmann J (2014) Nat Mater 13:1013.  https://doi.org/10.1038/nmat4049 CrossRefGoogle Scholar
  58. Song G, Xin F, Yin X (2015) J Colloid Interface Sci 442:60.  https://doi.org/10.1016/j.jcis.2014.11.039 CrossRefGoogle Scholar
  59. Tada H, Mitsui T, Kiyonaga T, Akita T, Tanaka K (2006) Nat Mater 5:782.  https://doi.org/10.1038/nmat1734 CrossRefGoogle Scholar
  60. Tahir B, Tahir M, Amin NAS (2017) Appl Surf Sci 419:875.  https://doi.org/10.1016/j.apsusc.2017.05.117 CrossRefGoogle Scholar
  61. Takayama T, Sato K, Fujimura T, Kojima Y, Iwase A, Kudo A (2017) Faraday Discuss 198:397.  https://doi.org/10.1039/c6fd00215c CrossRefGoogle Scholar
  62. Tong H, Ouyang S, Bi Y, Umezawa N, Oshikiri M, Ye J (2011) Adv Mater 24:229.  https://doi.org/10.1002/adma.201102752 CrossRefGoogle Scholar
  63. Tsuji I, Kato H, Kobayashi H, Kudo A (2004) J Am Chem Soc 126:13406.  https://doi.org/10.1021/ja048296m CrossRefGoogle Scholar
  64. Tu W, Zhou Y, Zou Z (2014) Adv Mater 26:4607.  https://doi.org/10.1002/adma.201400087 CrossRefGoogle Scholar
  65. Tu W, Zhou Y, Feng S, Xu Q, Li P, Wang X, Xiao M, Zou Z (2015) Chem Commun (Camb) 51:13354.  https://doi.org/10.1039/c5cc03905c CrossRefGoogle Scholar
  66. Wang X, Maeda K, Thomas A, Takanabe K, Xin G, Carlsson JM, Domen K, Antonietti M (2008) Nat Mater 8:76.  https://doi.org/10.1038/nmat2317 CrossRefGoogle Scholar
  67. Wang X, Liu G, Wang L, Chen Z-G, Lu GQM, Cheng H-M (2012) Adv Energy Mater 2:42.  https://doi.org/10.1002/aenm.201100528 CrossRefGoogle Scholar
  68. Wang JC, Zhang L, Fang WX, Ren J, Li YY, Yao HC, Wang JS, Li ZJ (2015) ACS Appl Mater Interfaces 7:8631.  https://doi.org/10.1021/acsami.5b00822 CrossRefGoogle Scholar
  69. Wang JC, Yao HC, Fan ZY, Zhang L, Wang JS, Zang SQ, Li ZJ (2016) ACS Appl Mater Interfaces 8:3765.  https://doi.org/10.1021/acsami.5b09901 CrossRefGoogle Scholar
  70. Wang M, Han Q, Li L, Tang L, Li H, Zhou Y, Zou Z (2017a) Nanotechnology 28:274002.  https://doi.org/10.1088/1361-6528/aa6bb5 CrossRefGoogle Scholar
  71. Wang S, Guan BY, Lu Y, Lou XWD (2017b) J Am Chem Soc 139:17305.  https://doi.org/10.1021/jacs.7b10733 CrossRefGoogle Scholar
  72. Wang J, Qin C, Wang H, Chu M, Zada A, Zhang X, Li J, Raziq F, Qu Y, Jing L (2018) Appl Catal B Environ 221:459.  https://doi.org/10.1016/j.apcatb.2017.09.042 CrossRefGoogle Scholar
  73. Wei Y, Jiao J, Zhao Z, Liu J, Li J, Jiang G, Wang Y, Duan A (2015) Appl Catal B Environ 179:422.  https://doi.org/10.1016/j.apcatb.2015.05.041 CrossRefGoogle Scholar
  74. White JL, Baruch MF, Pander Iii JE, Hu Y, Fortmeyer IC, Park JE, Zhang T, Liao K, Gu J, Yan Y, Shaw TW, Abelev E, Bocarsly AB (2015) Chem Rev 115:12888.  https://doi.org/10.1021/acs.chemrev.5b00370 CrossRefGoogle Scholar
  75. Xiang Q, Yu J, Jaroniec M (2012) Chem Soc Rev 41:782.  https://doi.org/10.1039/c1cs15172j CrossRefGoogle Scholar
  76. Xie K, Wu Q, Wang Y, Guo W, Wang M, Sun L, Lin C (2011) Electrochem Commun 13:1469.  https://doi.org/10.1016/j.elecom.2011.09.023 CrossRefGoogle Scholar
  77. Xie G, Zhang K, Guo B, Liu Q, Fang L, Gong JR (2013) Adv Mater 25:3820.  https://doi.org/10.1002/adma.201301207 CrossRefGoogle Scholar
  78. Xie S, Zhang Q, Liu G, Wang Y (2016) Chem Commun (Camb) 52:35.  https://doi.org/10.1039/c6cc00590j CrossRefGoogle Scholar
  79. Xing W, Liu C, Zhou Z, Zhang L, Zhou J, Zhuo S, Yan Z, Gao H, Wang G, Qiao SZ (2012) Energy Environ Sci 5:7323.  https://doi.org/10.1039/c2ee21653a CrossRefGoogle Scholar
  80. Yan H, Yang J, Ma G, Wu G, Zong X, Lei Z, Shi J, Li C (2009) J Catal 266:165.  https://doi.org/10.1016/j.jcat.2009.06.024 CrossRefGoogle Scholar
  81. Yang J, Wang D, Han H, Li C (2013) Acc Chem Res 46:1900.  https://doi.org/10.1021/ar300227e CrossRefGoogle Scholar
  82. Yang G, Chen D, Ding H, Feng J, Zhang JZ, Zhu Y, Hamid S, Bahnemann DW (2017a) Appl Catal B Environ 219:611.  https://doi.org/10.1016/j.apcatb.2017.08.016 CrossRefGoogle Scholar
  83. Yang Y, Wang S, Li Y, Wang J, Wang L (2017b) Chem Asian J 12:1421.  https://doi.org/10.1002/asia.201700540 CrossRefGoogle Scholar
  84. Ye L, Su Y, Jin X, Xie H, Zhang C (2014) Environ Sci Nano 1:90.  https://doi.org/10.1039/c3en00098b CrossRefGoogle Scholar
  85. Yoshitomi F, Sekizawa K, Maeda K, Ishitani O (2015) ACS Appl Mater Interfaces 7:13092.  https://doi.org/10.1021/acsami.5b03509 CrossRefGoogle Scholar
  86. Yu ZB, Xie YP, Liu G, Lu GQ, Ma XL, Cheng H-M (2013) J Mater Chem A 1:2773.  https://doi.org/10.1039/c3ta01476b CrossRefGoogle Scholar
  87. Yu J, Low J, Xiao W, Zhou P, Jaroniec M (2014) J Am Chem Soc 136:8839.  https://doi.org/10.1021/ja5044787 CrossRefGoogle Scholar
  88. Yu W, Xu D, Peng T (2015) J Mater Chem A 3:19936.  https://doi.org/10.1039/c5ta05503b CrossRefGoogle Scholar
  89. Zhang XV, Martin ST, Friend CM, Schoonen MAA, Holland HD (2004) J Am Chem Soc 126:11247.  https://doi.org/10.1021/ja0476415 CrossRefGoogle Scholar
  90. Zhang H, Fan X, Quan X, Chen S, Yu H (2011) Environ Sci Technol 45:5731.  https://doi.org/10.1021/es2002919 CrossRefGoogle Scholar
  91. Zhou P, Yu J, Jaroniec M (2014) Adv Mater 26:4920.  https://doi.org/10.1002/adma.201400288 CrossRefGoogle Scholar
  92. Zubair M, Razzaq A, Grimes CA, In S-I (2017) J CO2 Utilization 20:301.  https://doi.org/10.1016/j.jcou.2017.05.021 CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.National Synchrotron Radiation Laboratory, Collaborative Innovation Center of Chemistry for Energy MaterialsUniversity of Science & Technology of ChinaHefeiChina

Personalised recommendations