Advertisement

Nanophotocatalysts for Fuel Production

  • Annelise Kopp AlvesEmail author
Chapter
Part of the Environmental Chemistry for a Sustainable World book series (ECSW, volume 31)

Abstract

Quantum dots, particles with diameters from 2 up to 20 nm, are one of the sweethearts of nanotechnology because their properties are intermediate between bulk and discrete molecules and can be tuned according to their size and shape. Nowadays, quantum dots are one of the most common nanophotocatalysts used to produce fuel using ultraviolet, visible, or solar light. Traditional methods such as sol-gel, hydrothermal synthesis, e-beam lithography, microwave synthesis, and chemical vapor deposition, among others, are suitable for produced quantum dot photocatalysts. In this context, the most common fuels obtained using photocatalysts are carbon monoxide, formic acid, methanol, methane, and hydrogen. In this chapter, it will be given an overview of the main methods to obtain quantum dots and some examples of their use as a photocatalyst for fuel production.

Keywords

Quantum dots Photocatalysis Fuel Hydrogen Semiconductors Solar light 

References

  1. Adhikari T, Pathak D, Wagner T, Jambor R, Jabeen U, Aamir M, Nunzi J-M (2017) Structural, optical, electrochemical and photovoltaic studies of spider web like silver indium diselenide quantum dots synthesized by ligand mediated colloidal sol-gel approach. Opt Mater 73:70–76.  https://doi.org/10.1016/j.optmat.2017.08.005 CrossRefGoogle Scholar
  2. Asadzadeh-Khaneghah S, Habibi-Yangjeh A, Abedi M (2018) Decoration of carbon dots and AgCl over g-C3N4 nanosheets: novel photocatalysts with substantially improved activity under visible light. Sep Purif Technol 199:64–77.  https://doi.org/10.1016/j.seppur.2018.01.023 CrossRefGoogle Scholar
  3. Bertino MF, Gadipalli RR, Martin LA, Rich LE, Yamilov A, Heckman BR, Leventis N, Guha S, Katsoudas J, Divan R, Mancini DC (2007) Quantum dots by ultraviolet and x-ray lithography. Nanotechnology 18:315603.  https://doi.org/10.1088/0957-4484/18/31/315603 CrossRefGoogle Scholar
  4. Biswas M, Singh S, Balgarkashi A, Makkar R, Bhatnagar A, Sreedhara S, Chakrabarti S (2018) Vertical strain-induced dot size uniformity and thermal stability of InAs/GaAsN/GaAs coupled quantum dots. J Alloys Compd 748:601–607.  https://doi.org/10.1016/j.jallcom.2018.03.163 CrossRefGoogle Scholar
  5. Choi H, Lee J-G, Mai XD, Beard MC, Yoon SS, Jeong S (2017) Supersonically spray-coated colloidal quantum dot ink solar cells. Sci Rep 7(622):1–8.  https://doi.org/10.1038/s41598-017-00669-9 CrossRefGoogle Scholar
  6. Hong X, Xu Z, Zhang F, He C, Gao X, Liu Q, Guo W, Liu X, Ye M (2017) Sputtered seed-assisted growth of CuS nanosheet arrays as effective counter electrodes for quantum dot-sensitized solar cells. Mater Lett 203:73–76.  https://doi.org/10.1016/j.matlet.2017.05.078 CrossRefGoogle Scholar
  7. Hong W, Zhou Y, Lv C, Han Z, Chen G (2018) NiO quantum dot modified TiO2 toward robust hydrogen production performance. ACS Sustain Chem Eng 6:889–896.  https://doi.org/10.1021/acssuschemeng.7b03250 CrossRefGoogle Scholar
  8. Ji W, Liu S, Zhang H, Wang R, Xie W, Zhang H (2017) Ultrasonic spray processed, highly efficient all-inorganic quantum-dot light-emitting diodes. ACS Photon 4:1271–1278.  https://doi.org/10.1021/acsphotonics.7b00216 CrossRefGoogle Scholar
  9. Kaganskiy A, Fischbach S, Strittmatter A, Rodt S, Heindel T, Reitzenstein S (2018) Enhancing the photon-extraction efficiency of site-controlled quantum dots by deterministically fabricated microlenses. Opt Commun 413:162–166.  https://doi.org/10.1016/j.optcom.2017.12.032 CrossRefGoogle Scholar
  10. Kwak GY, Kim TG, Hong S, Kim A, Ha MH, Kim KJ (2018) Efficiency improvement of Si quantum dot solar cells by activation with boron implantation. Sol Energy 164:89–93.  https://doi.org/10.1016/j.solener.2018.02.029 CrossRefGoogle Scholar
  11. Li P-N, Ghule AV, Chang J-Y (2017) Direct aqueous synthesis of quantum dots for high-performance AgInSe2 quantum-dot-sensitized solar cell. J Power Sources 354:100–107.  https://doi.org/10.1016/j.jpowsour.2017.04.040 CrossRefGoogle Scholar
  12. Li M, Wang M, Zhu L, Li Y, Yan Z, Shen Z, Cao X (2018) Facile microwave assisted synthesis of N-rich carbon quantum dots/dualphase TiO2 heterostructured nanocomposites with high activity in CO2 photoreduction. Appl Catal B Environ 231:269–276.  https://doi.org/10.1016/j.apcatb.2018.03.027 CrossRefGoogle Scholar
  13. Lia M, Wang M, Zhu L, Li Y, Yan Z, Shen Z, Cao X (2018) Facile microwave assisted synthesis of N-rich carbon quantum dots/dual-phase TiO2 heterostructured nanocomposites with high activity in CO2 photoreduction. Appl Catal B Environ 231:269–276.  https://doi.org/10.1016/j.apcatb.2018.03.027 CrossRefGoogle Scholar
  14. Lin L-Y, Kavadiya S, Karakocak BB, Nie Y, Raliya R, Wang ST, Berezin MY, Biswas P (2018) ZnO1−x/carbon dots composite hollow spheres: facile aerosol synthesis and superior CO2 photoreduction under UV, visible and near-infrared irradiation. Appl Catal B Environ 230:36–48.  https://doi.org/10.1016/j.apcatb.2018.02.018 CrossRefGoogle Scholar
  15. Liu L, Wang Y, An W, Hu J, Cui W, Liang Y (2014) Photocatalytic activity of PbS quantum dots sensitized flower-like Bi2WO6 for degradation of rhodamine B under visible light irradiation. J Mol Catal A Chem 394:309–315.  https://doi.org/10.1016/j.molcata.2014.07.029 CrossRefGoogle Scholar
  16. Liu Q, Jiang M, Ju Z, Qiao X, Xu Z (2018a) Development of direct competitive biomimetic immunosorbent assay based on quantum dot label for determination of trichlorfon residues in vegetables. Food Chem 250:134–139.  https://doi.org/10.1016/j.foodchem.2017.12.079 CrossRefGoogle Scholar
  17. Liu E, Chen J, Ma Y, Feng J, Jia J, Fan J, Hu X (2018b) Fabrication of 2D SnS2/g-C3N4 heterojunction with enhanced H2 evolution during photocatalytic water splitting. J Colloid Interface Sci 524:313–324.  https://doi.org/10.1016/j.jcis.2018.04.038 CrossRefGoogle Scholar
  18. Mir IA, Das K, Rawat K, Bohidar HB (2016) Hot injection versus room temperature synthesis of CdSe quantum dots: a differential spectroscopic and bioanalyte sensing efficacy evaluation. Colloids Surf A Physicochem Eng Asp 494:162–169.  https://doi.org/10.1016/j.colsurfa.2016.01.002 CrossRefGoogle Scholar
  19. Murray CB, Norris DJ, Bawendi MG (1993) Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites. J Am Chem Soc 115:8706–8715.  https://doi.org/10.1021/ja00072a025 CrossRefGoogle Scholar
  20. Pan J, Liu J, Zuo S, Khan UA, Yu Y, Li B (2018) Synthesis of cuboid BiOCl nanosheets coupled with CdS quantum dots by region-selective deposition process with enhanced photocatalytic activity. Mater Res Bull 103:216–224.  https://doi.org/10.1016/j.materresbull.2018.03.043 CrossRefGoogle Scholar
  21. Panb D, Hanb Z, Miao Y, Zhang D, Li G (2018) Thermally stable TiO2 quantum dots embedded in SiO2 foams: characterization and photocatalytic H2 evolution activity. Appl Catal B Environ 229:130–138.  https://doi.org/10.1016/j.apcatb.2018.02.022 CrossRefGoogle Scholar
  22. Patel M, Kim JS, Kim BS, Kim Y-H, Kim J (2018) Optical and photoelectrochemical properties of transparent NiO quantum dots. Mater Lett 218:123–126.  https://doi.org/10.1016/j.matlet.2018.01.162 CrossRefGoogle Scholar
  23. Rajabi HR (2016) Photocatalytic activity of quantum dots, semiconductor photocatalysis – materials, mechanisms and applications, Prof. Wenbin Cao (Ed.), InTech.  https://doi.org/10.5772/63435
  24. Roy A, Hursán D, Artyushkova K, Atanassov P, Janáky C, Serov A (2018) Nanostructured metal-N-C electrocatalysts for CO2 reduction and hydrogen evolution reactions. Appl Catal B Environ 232:512–520.  https://doi.org/10.1016/j.apcatb.2018.03.093 CrossRefGoogle Scholar
  25. Tile N, Ahia CC, Olivier J, Botha JR (2018) Atmospheric pressure-MOVPE growth of GaSb/GaAs quantum dots. Phys B Condens Matter 535:20–23.  https://doi.org/10.1016/j.physb.2017.06.014 CrossRefGoogle Scholar
  26. Wang R, K-Q. L, Zhang F, Tang Z-R, Xu Y-J (2018a) 3D carbon quantum dots/graphene aerogel as a metal-free catalyst for enhanced photosensitization efficiency. Appl Catal B Environ 233:11–18.  https://doi.org/10.1016/j.apcatb.2018.03.108 CrossRefGoogle Scholar
  27. Wang M, Hu J, Yang Y (2018b) Fabrication of CDs/CdS-TiO2 ternary nano-composites for photocatalytic degradation of benzene and toluene under visible light irradiation. Spectrochim Acta A Mol Biomol Spectrosc 199:102–109.  https://doi.org/10.1016/j.saa.2018.03.041 CrossRefGoogle Scholar
  28. Wang R, Kong X, Zhang W, Zhu W, Huang L, Wang J, Zhang X, Liu X, Hu N, Suo Y, Wang J (2018c) Mechanism insight into rapid photocatalytic disinfection of Salmonella based on vanadate QDs-interspersed g-C3N4 heterostructures. Appl Catal B Environ 225:228–237.  https://doi.org/10.1016/j.apcatb.2017.11.060 CrossRefGoogle Scholar
  29. Xie Z, Feng Y, Wang F, Chen D, Zhang Q, Zeng Y, Lv W, Liu G (2018) Construction of carbon dots modified MoO3/g-C3N4 Z-scheme photocatalyst with enhanced visible-light photocatalytic activity for the degradation of tetracycline. Appl Catal B Environ 229:96–104.  https://doi.org/10.1016/j.apcatb.2018.02.011 CrossRefGoogle Scholar
  30. Xu F, Zhang J, Zhu B, Yu J, Xu J (2018) CuInS2 sensitized TiO2 hybrid nanofibers for improved photocatalytic CO2 reduction. Appl Catal B Environ 230:194–202.  https://doi.org/10.1016/j.apcatb.2018.02.042 CrossRefGoogle Scholar
  31. Yadav D, Yadav RK, Kumar A, Park N-J, Baeg J-O (2016) Functionalized graphene quantum dots as efficient visible-light photocatalysts for selective solar fuel production from CO2. ChemCatChem 8:3389–3393.  https://doi.org/10.1002/cctc.201600905 CrossRefGoogle Scholar
  32. Yang D, Wang L, Hao Z-B, Luo Y, Sun C, Han Y, Xiong B, Wang J, Li H (2016) Dislocation analysis of InGaN/GaN quantum dots grown by metal organic chemical vapor deposition. Superlattice Microst 99:221–225.  https://doi.org/10.1016/j.spmi.2016.02.016 CrossRefGoogle Scholar
  33. Zhao T, Xing Z, Xiu Z, Li Z, Shen L, Cao Y, Hu M, Yang S, Zhou W (2018) CdS quantum dots/Ti3+-TiO2 nanobelts heterojunctions as efficient visible light-driven photocatalysts. Mater Res Bull 103:114–121.  https://doi.org/10.1016/j.materresbull.2018.03.029

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Universidade Federal do Rio Grande do SulPorto AlegreBrazil

Personalised recommendations