Advertisement

Dynamic Unified RANS-LES Simulations of Periodic Hill Flow

  • R. Mokhtarpoor
  • S. HeinzEmail author
  • M. K. Stoellinger
Conference paper
Part of the ERCOFTAC Series book series (ERCO, volume 25)

Abstract

The hybrid RANS-LES methodology intends to combine the most favorable aspects of Reynolds-averaged Navier-Stokes (RANS) and large eddy simulation (LES) to take advantage of both the computational efficiency of RANS and ability of LES to resolve instantaneous large scale flow structures. In this paper we present a new hybrid RANS-LES model which benefits from two important properties.

Notes

Acknowledgements

The authors would like to acknowledge support through NASA’s NRA research opportunities in aeronautics program (Grant No. NNX12AJ71A) and support from the National Science Foundation (DMS-CDS&E-MSS, Grant No. 1622488). We are very thankful for computational resources provided by the Wyoming Advanced Research Computing Center [10] and the Wyoming-NCAR Alliance [11].

References

  1. 1.
    Gopalan, H., Heinz, S., Stoellinger, M.: A unified RANS-LES model: computational development, accuracy and cost. J. Comput. Phys. 249, 249–274 (2013)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Heinz, S.: Unified turbulence models for LES and RANS, FDF and PDF simulations. Theor. Comput. Fluid Dyn. 21, 99–118 (2007)CrossRefGoogle Scholar
  3. 3.
    Heinz, S.: Realizability of dynamic subgrid-scale stress models via stochastic analysis. Monte Carlo Methods Appl. 14, 311–329 (2008)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Heinz, S., Gopalan, H.: Realizable versus non-realizable dynamic subgrid-scale stress models. Phys. Fluids 24, 115105 (2012)CrossRefGoogle Scholar
  5. 5.
    Mokhtarpoor, R., Heinz, S., Stoellinger, M.: Dynamic unified RANS-LES simulations of high Reynolds number separated flows. Phys. Fluids 28, 095101 (2016)CrossRefGoogle Scholar
  6. 6.
    Bredberg, J., Peng, S.H., Davidson, L.: An improved k-\(\omega \) turbulence model applied to recirculating flows. Int. J. Heat Fluid Flow 23, 731–743 (2002)CrossRefGoogle Scholar
  7. 7.
    Rapp, C., Manhart, M.: Flow over periodic hills - an experimental study. Exp. Fluids 51, 247–269 (2011)CrossRefGoogle Scholar
  8. 8.
    Chaouat, B., Schiestel, R.: Hybrid RANS/LES simulations of the turbulent flow over periodic hills at high Reynolds number using the PITM method. Comput. Fluids 84, 279–300 (2013)MathSciNetCrossRefGoogle Scholar
  9. 9.
  10. 10.
    Advanced Research Computing Center. Mount Moran: IBM System X cluster. University of Wyoming, Laramie, WY. Retrieved from http://n2t.net/ark:/85786/m4159c, 25 June 2017
  11. 11.
    Computational and Information Systems Laboratory. Yellowstone: IBM iDataPlex System (Wyoming-NCAR Alliance). Boulder, CO: National Center for Atmospheric Research. Retrieved from http://n2t.net/ark:/85065/d7wd3xhc, 25 June 2017

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of WyomingLaramieUSA
  2. 2.Department of Mechanical EngineeringUniversity of WyomingLaramieUSA

Personalised recommendations