Advertisement

Evaluation of the Spectral Element Dynamic Model for LES on Unstructured, Deformed Meshes

  • G. LodatoEmail author
  • J. B. Chapelier
Conference paper
Part of the ERCOFTAC Series book series (ERCO, volume 25)

Abstract

Discontinuous finite element methods (DFEM) such as the discontinuous Galerkin (DG) (Cockburn et al, Discontinuous Galerkin methods: theory, computation, and applications. Springer, Berlin, 2000), [1] or the spectral difference (SD) (Kopriva and Kolias, J Comput Phys 125(1):244–261, 1996), [7], (Liu et al, J Comput Phys 216(2):780–801, 2006), [9], (Wang et al, J Sci Comput 32(1):45–71, 2007), [21] methods show a strong potential for the direct numerical simulation (DNS) and large-eddy simulation (LES) of turbulent flows on realistic geometries. These methods are characterized by a rather peculiar mix of features, such as their high-orders of accuracy, the ability to handle unstructured meshes, curved boundary elements and the compactness of the stencil, which allows for optimal parallelism. The extremely low level of numerical dissipation which can be achieved when high-orders are selected, and the consequent significant increase in resolving power, make DFEM particularly well suited for LES.

Notes

Acknowledgements

The use of the SD solver originally developed by Antony Jameson’s group at Stanford University, and joint financial support from the Agence Nationale de la Recherche (ANR) and Fondation de Recherche pour l’Aéronautique et l’Espace (FRAE) under Grant No. ANR-14-CE05-0029 are gratefully acknowledged. This work was granted access to the HPC resources of IDRIS-CNRS under the allocation i2015-2a7361. The Haute Normandie Computing center CRIANN is also acknowledged.

References

  1. 1.
    Cockburn, B., Karniadakis, G., Shu, C. (eds.): Discontinuous Galerkin Methods: Theory, Computation, and Applications. Lecture Notes in Computational Science and Engineering, vol. 11. Springer, Berlin (2000)zbMATHGoogle Scholar
  2. 2.
    Chapelier, J.B., De La Llave Plata, M., Lamballais, E.: Comput. Meth. Appl. Mech. Eng. 307, 275–299 (2016)Google Scholar
  3. 3.
    Chapelier, J.B., Lodato, G.: J. Comput. Phys. 321, 279–302 (2016)Google Scholar
  4. 4.
    Chapelier, J.B., Lodato, G., Jameson, A.: Comput. Fluids 139, 261–280 (2016)Google Scholar
  5. 5.
    Erlebacher, G., Hussaini, M., Speziale, C., Zang, T.: J. Fluid Mech. 238, 155–185 (1992)CrossRefGoogle Scholar
  6. 6.
    Konstantinidis, E., Balabani, S., Yianneskis, M.: Exp. Fluids 39(1), 38–47 (2005)Google Scholar
  7. 7.
    Kopriva, D., Kolias, J.: J. Comput. Phys. 125(1), 244–261 (1996)Google Scholar
  8. 8.
    Lesieur M., Métais O., Comte P.: Large-Eddy Simulations of Turbulence. Cambridge University Press, Cambridge (2005)Google Scholar
  9. 9.
    Liu, Y., Vinokur, M., Wang, Z.: J. Comput. Phys. 216(2), 780–801 (2006)Google Scholar
  10. 10.
    Lodato G., Castonguay P., Jameson A.: AIAA P, 2012-2963: 1–12. In: 42nd AIAA Fluid Dynamics Conference and Exhibit, New Orleans, LA, 25–28 Jun 2012Google Scholar
  11. 11.
    Lodato, G., Castonguay, P., Jameson, A.: Flow Turbul. Combust. 92(1–2), 579–606 (2014)Google Scholar
  12. 12.
    Lodato G., Rossi R.: AIAA P, 2013-3100: 1–17. In: 43rd Fluid Dynamics Conference, San Diego, CA, 24–27 Jun 2013Google Scholar
  13. 13.
    Lodato, G., Vervisch, L., Domingo, P.: Phys. Fluids 21(3), 035102 (2009)Google Scholar
  14. 14.
    Lyn, D., Rodi, W.: J. Fluid Mech. 267, 353–376 (1994)CrossRefGoogle Scholar
  15. 15.
    Parnaudeau, P., Carlier, J., Heitz, D., Lamballais, E.: Phys. Fluids 20, 085101 (2008)Google Scholar
  16. 16.
    Roe, P.: J. Comput. Phys. 43, 357–372 (1981)Google Scholar
  17. 17.
    Sagaut, P.: Large Eddy Simulation for Incompressible Flows: An Introduction, 2nd edn. Springer, Berlin (2001)CrossRefGoogle Scholar
  18. 18.
    Sun, M., Takayama, K.: J. Comput. Phys. 189(1), 305–329 (2003)Google Scholar
  19. 19.
    Sun, Y., Wang, Z., Liu, Y.: Commun. Comput. Phys. 2(2), 310–333 (2007)Google Scholar
  20. 20.
    Temmerman, L., Leschziner, M., Mellen, C., Fröhlich, J.: Int. J. Heat Fluid Fl. 24(2), 157–180 (2003)Google Scholar
  21. 21.
    Wang, Z., Liu, Y., May, G., Jameson, A.: J. Sci. Comput. 32(1), 45–71 (2007)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Energy and PropulsionNormandie Université, INSA et Université de Rouen, CNRS CORIA UMR6614RouenFrance
  2. 2.Department of Mechanical EngineeringPurdue UniversityWest LafayetteUSA

Personalised recommendations