Advertisement

DNS of Thermocapillary Migration of Deformable Droplets

  • N. BalcázarEmail author
  • O. Antepara
  • J. Rigola
  • A. Oliva
Conference paper
Part of the ERCOFTAC Series book series (ERCO, volume 25)

Abstract

A nonuniform distribution of temperature field on a fluid-fluid interface leads to surface tension gradients, which induce shear stresses that produce the motion of a drop in the direction of the temperature gradient. This phenomenon is known as thermocapillary flow or Marangoni migration. In addition to its importance from a fundamental point of view, thermocapillary flows play an important role in micro gravity environments (Subramanian and Balasubramaniam, The motion of bubbles and drops in reduced gravity. Cambridge University Press, Cambridge, 2001, [1]) and micro-devices (Darhuber and Troian, Annu Rev Fluid Mech 37:425–455, 2005, [2]).

Notes

Acknowledgements

This work has been financially supported by MINECO (ENE2015-70672-P), and by Termo Fluids S.L., Spain. Néstor Balcázar acknowledges financial support of the Programa Torres Quevedo MINECO (PTQ-14-07186), Spain. Oscar Antepara acknowledges financial support of MINECO (DI-14-06886), and Secretaria d’ Universitats i Recerca del Departament d’Economia i Coneixement de la Generalitat de Catalunya (2015DI-68), Spain. Three-dimensional simulations were carried out using computer time awarded by PRACE 14th Call (project 2014112666) on the supercomputer MareNostrum IV based in Barcelona, Spain.

References

  1. 1.
    Subramanian, R.S., Balasubramaniam, R.: The Motion of Bubbles and Drops in Reduced Gravity. Cambridge University Press, Cambridge (2001)zbMATHGoogle Scholar
  2. 2.
    Darhuber, A.A., Troian, S.M.: Principles of microfluidic actuation by modulation of surface stresses. Annu. Rev. Fluid Mech. 37, 425–455 (2005)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Balcázar, N., Rigola, J., Castro, J., Oliva, A.: A level-set model for thermocapillary motion of deformable fluid particles. Int. J. Heat Fluid Flow 62, Part B, 324–343 (2016)CrossRefGoogle Scholar
  4. 4.
    Balcázar, N., Jofre, L., Lehmkhul, O., Castro, J., Rigola, J.: A finite-volume/level-set method for simulating two-phase flows on unstructured grids. Int. J. Multiph. Flow 64, 55–72 (2014)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Coyajee, E., Boersma, J.B.: Numerical simulation of drop impact on a liquid-liquid interface with a multiple marker front-capturing method. J. Comp. Phys. 228, 4444–4467 (2009)CrossRefGoogle Scholar
  6. 6.
    Olsson, E., Kreiss, G.: A conservative level set method for two phase flow. J. Comput. Phys. 210, 225–246 (2005)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Sussman, M., Smereka, P., Osher, S.: A level set approach for computing solutions to incompressible two-phase flow. J. Comput. Phys. 144, 146–159 (1994)CrossRefGoogle Scholar
  8. 8.
    Tryggvason, G., Bunner, B., Esmaeeli, A., Juric, D., Al-Rawahi, N., Tauber, W., Han, J., Nas, S., Jan, Y.-J.: A front-tracking method for the computations of multiphase flow. J. Comput. Phys. 169, 708–759 (2001)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Balcázar, N., Lehmkhul, O., Rigola, J., Oliva, A.: A multiple marker level-set method for simulation of deformable fluid particles. Int. J. Multiph. Flow 74, 125–142 (2015)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Balcázar, N., Castro, J., Rigola, J., Oliva, A.: DNS of the wall effect on the motion of bubble swarms. Procedia Comput. Sci. 108, 2008–2017 (2017)CrossRefGoogle Scholar
  11. 11.
    Brackbill, J.U., Kothe, D.B., Zemach, C.: A continuum method for modeling surface tension. J. Comput. Phys. 100, 335–354 (1992)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Balcázar, N., Lehmkhul, O., Jofre, L., Rigola, J., Oliva, A.: A coupled volume-of-fluid/level-set method for simulation of two-phase flows on unstructured meshes. Comput. Fluids 124, 12–29 (2016)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Balcázar, N., Lemhkuhl, O., Jofre, L., Oliva, A.: Level-set simulations of buoyancy-driven motion of single and multiple bubbles. Int. J. Heat Fluid Flow 56, 91–107 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • N. Balcázar
    • 1
    • 2
    Email author
  • O. Antepara
    • 1
    • 2
  • J. Rigola
    • 2
  • A. Oliva
    • 2
  1. 1.Termo Fluids S.L.TerrassaSpain
  2. 2.Heat and Mass Transfer Technological Center (CTTC)Technical University of Catalonia (UPC)BarcelonaSpain

Personalised recommendations